27 research outputs found

    Fecal microbiota transplantation in a child with severe ASD comorbidities of gastrointestinal dysfunctions—a case report

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by social communication impairments and restricted, repetitive behaviors. In addition to behavioral interventions and psychotherapies, and pharmacological interventions, in-depth studies of intestinal microbiota in ASD has obvious abnormalities which may effectively influenced in ASD. Several attempts have been made to indicate that microbiota can reduce the occurrence of ASD effectively. Fecal microbiota transplantation (FMT) is a type of biological therapy that involves the transplant of intestinal microbiota from healthy donors into the patient’s gastrointestinal tract to improve the gut microenvironment. In this case report, we describe a case of child ASD treated by FMT. The patient have poor response to long-term behavioral interventions. After five rounds of FMT, clinical core symptoms of ASD and gastrointestinal(GI) symptoms were significantly altered. Moreover, the multiple levels of functional development of child were also significantly ameliorated. We found that FMT changed the composition of the intestinal microbiota as well as the metabolites, intestinal inflammatory manifestations, and these changes were consistent with the patient’s symptoms. This report suggests further FMT studies in ASD could be worth pursuing, and more studies are needed to validate the effectiveness of FMT in ASD and its mechanisms

    Evaluation of Piperacillin/Sulbactam, Piperacillin/Tazobactam and Cefoperazone/Sulbactam Dosages in Gram-Negative Bacterial Bloodstream Infections by Monte Carlo Simulation

    No full text
    The optimal regimens of piperacillin/sulbactam (PIS 2:1), piperacillin/tazobactam (PTZ 8:1), and cefoperazone/sulbactam (CSL 2:1) are not well defined in patients based on renal function. This study was conducted to identify optimal regimens of BLBLIs in these patients. The antimicrobial sensitivity test was performed by a two-fold agar dilution method. Monte Carlo simulation (MCS) was used to simulate the probability of target attainment (PTA) and the cumulative fraction of response (CFR) for various dosing regimens in patients with different renal functions. For strains with an MIC ≤ 8/4 mg/L, PIS 4.5 g q6h achieved 99.03%PTA in the subset of patients with creatinine clearance (CrCL) > 90 mL/min. For patients with CrCL 60–90 mL/min, PIS 4.5 g q6h achieved 81.2% CFR; for those with CrCL 40–59 mL/min, PIS 4.5 g q8h achieved 80.25% CFR. However, for patients infected by ESBL-producing Enterobacteriaceae, PIS 4.5 g q6h achieved a CFR lower than 80%. For patients infected by A. baumannii with a CrCL of 31–60 mL/min, PIS 6.0 g q8h and 4.5 g q6h achieved 81.24% and 82.42% CFR, respectively. For those infected by P. aeruginosa, PIS 4.5 g q6h reached 90% CFR. PIS and PTZ achieved a similar CFR when piperacillin was at the same dose. The CFRs of CSL were much lower than those of the other two agents in Enterobacteriaceae and P. aeruginosa infections. The antibacterial spectrum of PIS is superior to that of PTZ and CSL. Higher dosages and dosing adjustment according to renal function should be considered to treat Gram-negative bacterial BSIs

    A Comparative Study on the K-ion Storage Behavior of Commercial Carbons

    No full text
    Potassium-ion battery, a key analog of lithium-ion battery, is attracting enormous attentions owing to the abundant reserves and low cost of potassium salts, and the electrochemically reversible insertion/extraction of the K-ion within the commercial graphite inspires a research spotlight in searching and designing suitable carbon electrode materials. Herein, five commercially available carbons are selected as the anode material, and the K-ion storage capability is comparably evaluated from various aspects, including reversible capacity, cyclability, coulombic efficiency, and rate capability. This work may boost the development of potassium-ion batteries from a viewpoint of practical applications

    Genomic and Phenotypic Diversity of Carbapenemase-Producing Enterobacteriaceae Isolates from Bacteremia in China: A Multicenter Epidemiological, Microbiological, and Genetic Study

    No full text
    Carbapenemase-producing Enterobacteriaceae (CPE) isolates are recognized as one of the most severe threats to public health. However, the population structure and genetic characteristics of CPE isolates among bloodstream infections (BSIs) are largely unknown. To address this knowledge gap, in this study, we included patients with clinically significant BSIs due to Enterobacterales isolates, recruited from 26 sentinel hospitals in China (2014–2015). CPE isolates were microbiologically and genomically characterized, including their susceptibility profiles, molecular typing, phylogenetic features, and genetic context analysis of carbapenemase-encoding genes. Of the 2569 BSI Enterobacterales isolates enrolled, 42 (1.6%) were carbapenemase-positive. Moreover, among the 2242 investigated isolates, 1111 (49.6%) extended-spectrum β-lactamase (ESBL)-producing isolates were identified in Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Proteus mirabilis (P. mirabilis), and Klebsiella oxytoca. Whole genome sequencing analysis showed the clonal spread of K. pneumoniae carbapenemase (KPC)-2-producing K. pneumoniae sequence type (ST) 11 and New Delhi metallo-β-lactamase (NDM)-5-producing E. coli ST167 in our collection. Plasmid analysis revealed that carbapenemase-encoding genes were located on multiple plasmids. A high prevalence of biofilm-encoding type 3 fimbriae clusters and yesiniabactin-associated genes was observed in K. pneumoniae isolates. This work demonstrates the high prevalence of ESBLs and the wide dissemination of CPE among BSI isolates in China, which represent real clinical threats. Moreover, our findings first illustrate a more comprehensive genome scenario of CPE isolates among BSIs. The clonal spread of KPC-2-producing K. pneumoniae ST11 and NDM-5-producing E. coli ST167 needs to be closely monitored

    Gyrl-like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection

    No full text
    Gyrl-like proteins are widely distributed in prokaryotes and eukaryotes, and recognized as small-molecule binding proteins. Here, we identify a subfamily of these proteins as cyclo-propanoid cyclopropyl hydrolases (CCHs) that can catalyze the hydrolysis of the potent DNA-alkylating agents yatakemycin (YTM) and CC-1065. Co-crystallography and molecular dynamics simulation analyses reveal that these CCHs share a conserved aromatic cage for the hydrolytic activity. Subsequent cytotoxic assays confirm that CCHs are able to protect cells against YTM. Therefore, our findings suggest that the evolutionarily conserved Gyrl-like proteins confer cellular protection against diverse xenobiotics via not only binding, but also catalysis

    Image_3_Human papillomavirus infection can alter the level of tumour stemness and T cell infiltration in patients with head and neck squamous cell carcinoma.tiff

    No full text
    Head and neck squamous cell carcinoma (HNSCC) usually has a poor prognosis and is associated with a high mortality rate. Its etiology is mainly the result from long-term exposure to either alcohol, tobacco or human papillomavirus (HPV) infection or a combination of these insults. However, HNSCC patients with HPV have been found to show a survival advantage over those without the virus, but the mechanism that confers this advantage is unclear. Due to the large number of HPV-independent HNSCC cases, there is a possibility that the difference in prognosis between HPV-positive (HPV+) and negative (HPV-) patients is due to different carcinogens. To clarify this, we used scRNA data and viral tracking methods in order to identify HPV+ and HPV- cells in the tumour tissues of patients infected with HPV. By comparing HPV+ and HPV- malignant cells, we found a higher level of tumour stemness in HPV- tumour cells. Using tumour stemness-related genes, we established a six-gene prognostic signature that was used to divide the patients into low- and high-risk groups. It was found that HPV patients who were at low-risk of contracting HNSCC had a higher number of CD8+ T-cells as well as a higher expression of immune checkpoint molecules. Correspondingly, we found that HPV+ tumour cells expressed higher levels of CCL4, and these were highly correlated with CD8+ T cells infiltration and immune checkpoint molecules. These data suggest that the stemness features of tumour cells are not only associated with the prognostic risk, but that it could also affect the immune cell interactions and associated signalling pathways.</p

    Image_5_Human papillomavirus infection can alter the level of tumour stemness and T cell infiltration in patients with head and neck squamous cell carcinoma.tiff

    No full text
    Head and neck squamous cell carcinoma (HNSCC) usually has a poor prognosis and is associated with a high mortality rate. Its etiology is mainly the result from long-term exposure to either alcohol, tobacco or human papillomavirus (HPV) infection or a combination of these insults. However, HNSCC patients with HPV have been found to show a survival advantage over those without the virus, but the mechanism that confers this advantage is unclear. Due to the large number of HPV-independent HNSCC cases, there is a possibility that the difference in prognosis between HPV-positive (HPV+) and negative (HPV-) patients is due to different carcinogens. To clarify this, we used scRNA data and viral tracking methods in order to identify HPV+ and HPV- cells in the tumour tissues of patients infected with HPV. By comparing HPV+ and HPV- malignant cells, we found a higher level of tumour stemness in HPV- tumour cells. Using tumour stemness-related genes, we established a six-gene prognostic signature that was used to divide the patients into low- and high-risk groups. It was found that HPV patients who were at low-risk of contracting HNSCC had a higher number of CD8+ T-cells as well as a higher expression of immune checkpoint molecules. Correspondingly, we found that HPV+ tumour cells expressed higher levels of CCL4, and these were highly correlated with CD8+ T cells infiltration and immune checkpoint molecules. These data suggest that the stemness features of tumour cells are not only associated with the prognostic risk, but that it could also affect the immune cell interactions and associated signalling pathways.</p

    Image_2_Human papillomavirus infection can alter the level of tumour stemness and T cell infiltration in patients with head and neck squamous cell carcinoma.tiff

    No full text
    Head and neck squamous cell carcinoma (HNSCC) usually has a poor prognosis and is associated with a high mortality rate. Its etiology is mainly the result from long-term exposure to either alcohol, tobacco or human papillomavirus (HPV) infection or a combination of these insults. However, HNSCC patients with HPV have been found to show a survival advantage over those without the virus, but the mechanism that confers this advantage is unclear. Due to the large number of HPV-independent HNSCC cases, there is a possibility that the difference in prognosis between HPV-positive (HPV+) and negative (HPV-) patients is due to different carcinogens. To clarify this, we used scRNA data and viral tracking methods in order to identify HPV+ and HPV- cells in the tumour tissues of patients infected with HPV. By comparing HPV+ and HPV- malignant cells, we found a higher level of tumour stemness in HPV- tumour cells. Using tumour stemness-related genes, we established a six-gene prognostic signature that was used to divide the patients into low- and high-risk groups. It was found that HPV patients who were at low-risk of contracting HNSCC had a higher number of CD8+ T-cells as well as a higher expression of immune checkpoint molecules. Correspondingly, we found that HPV+ tumour cells expressed higher levels of CCL4, and these were highly correlated with CD8+ T cells infiltration and immune checkpoint molecules. These data suggest that the stemness features of tumour cells are not only associated with the prognostic risk, but that it could also affect the immune cell interactions and associated signalling pathways.</p
    corecore