156 research outputs found

    FC-Planner: A Skeleton-guided Planning Framework for Fast Aerial Coverage of Complex 3D Scenes

    Full text link
    3D coverage path planning for UAVs is a crucial problem in diverse practical applications. However, existing methods have shown unsatisfactory system simplicity, computation efficiency, and path quality in large and complex scenes. To address these challenges, we propose FC-Planner, a skeleton-guided planning framework that can achieve fast aerial coverage of complex 3D scenes without pre-processing. We decompose the scene into several simple subspaces by a skeleton-based space decomposition (SSD). Additionally, the skeleton guides us to effortlessly determine free space. We utilize the skeleton to efficiently generate a minimal set of specialized and informative viewpoints for complete coverage. Based on SSD, a hierarchical planner effectively divides the large planning problem into independent sub-problems, enabling parallel planning for each subspace. The carefully designed global and local planning strategies are then incorporated to guarantee both high quality and efficiency in path generation. We conduct extensive benchmark and real-world tests, where FC-Planner computes over 10 times faster compared to state-of-the-art methods with shorter path and more complete coverage. The source code will be open at https://github.com/HKUST-Aerial-Robotics/FC-Planner.Comment: Submitted to ICRA2024. 6 Pages, 6 Figures, 3 Tables. Code: https://github.com/HKUST-Aerial-Robotics/FC-Planner. Video: https://www.bilibili.com/video/BV1h84y1D7u5/?spm_id_from=333.999.0.0&vd_source=0af61c122e5e37c944053b57e313025

    Nonconservative behavior of dissolved molybdenum and its potential role in nitrogen cycling in the Bohai and Yellow Seas

    Get PDF
    Molybdenum plays an important role in marine biological activity, especially in nitrogen cycling as a cofactor for N2 fixation and nitrate reductase. However, the dissolved Mo (dMo) behavior and its interaction with N cycling in the coastal waters is still unclear. In this study, the dMo concentrations and parameters related to Mo distribution and N cycling in surface and bottom seawaters of the Bohai (BS) and Yellow Seas (YS) were examined. The results showed that dMo concentrations ranged from 36.4 nmol L-1 to 125.0 nmol L-1, most of which deviated significantly from the conservative line, indicating nonconservative behavior of Mo relative to salinity. The highest dMo concentrations occurring in 36°N section of north of the South YS (SYS), were close to conservative value (105 nmol L-1). Significant depletion up to 40-50 nmol L-1 of dMo mainly appeared in the BS, NYS and south of the SYS, suggesting the possible removal of dMo by biological utilization and particle adsorption. Particularly, the increasing dMo concentrations away the Yellow River estuary indicated that freshwater dilution was one of reasons for dMo distributions in the BS. The similar spatial distribution of dMo and dissolved Mn concentrations suggested the possible scavenging by MnOx phases for Mo removal. The negative correlation between dMo and chlorophyll-a (Chl-a) concentrations in surface seawaters suggested that biological uptake was involved in dMo removal. The depleted dMo in most of sites corresponded with the higher nitrite concentrations, implying the possible involvement of nitrate reduction process. Although the highest N2 fixation rates and relative abundances of cyanobacteria appeared in 36°N section, corresponding with the conservative dMo, suggesting that Mo may play a minor role in N2 fixation process there. The ten-folds of relative abundance of bacteria with nitrate reduction function than that with N2 fixation function suggested that dMo seems to play more important role in nitration reduction than nitrogen fixation in the BS and YS

    Mutual effect of homocysteine and uric acid on arterial stiffness and cardiovascular risk in the context of predictive, preventive, and personalized medicine

    Get PDF
    Background: Arterial stiffness is a major risk factor and effective predictor of cardiovascular diseases and a common pathway of pathological vascular impairments. Homocysteine (Hcy) and uric acid (UA) own the shared metabolic pathways to affect vascular function. Serum uric acid (UA) has a great impact on arterial stiffness and cardiovascular risk, while the mutual effect with Hcy remains unknown yet. This study aimed to evaluate the mutual effect of serum Hcy and UA on arterial stiffness and 10-year cardiovascular risk in the general population. From the perspective of predictive, preventive, and personalized medicine (PPPM/3PM), we assumed that combined assessment of Hcy and UA provides a better tool for targeted prevention and personalized intervention of cardiovascular diseases via suppressing arterial stiffness. Methods: This study consisted of 17,697 participants from Beijing Health Management Cohort, who underwent health examination between January 2012 and December 2019. Brachial-ankle pulse wave velocity (baPWV) was used as an index of arterial stiffness. Results: Individuals with both high Hcy and UA had the highest baPWV, compared with those with low Hcy and low UA (β: 30.76, 95 % CI: 18.36 – 43.16 in males; β: 53.53, 95 % CI: 38.46–68.60 in females). In addition, these individuals owned the highest 10-year cardiovascular risk (OR: 1.49, 95 % CI: 1.26 – 1.76 in males; OR: 7.61, 95 % CI: 4.63 – 12.68 in females). Of note, males with high homocysteine and low uric acid were significantly associated with increased cardiovascular risk (OR: 1.30, 95 % CI: 1.15 – 1.47), but not the high uric acid and low homocysteine group (OR: 1.02, 95 % CI: 0.90 – 1.16). Conclusions: This study found the significantly mutual effect of Hcy and UA on arterial stiffness and cardiovascular risk using a large population and suggested the clinical importance of combined evaluation and control of Hcy and UA for promoting cardiovascular health. The adverse effect of homocysteine on arteriosclerosis should be addressed beyond uric acid, especially for males. Monitoring of the level of both Hcy and UA provides a window opportunity for PPPM/3PM in the progression of arterial stiffness and prevention of CVD. Hcy provides a novel predictor beyond UA of cardiovascular health to identify individuals at high risk of arterial stiffness for the primary prevention and early treatment of CVD. In the progressive stage of arterial stiffness, active control of Hcy and UA levels from the aspects of dietary behavior and medication treatment is conducive to alleviating the level of arterial stiffness and reducing the risk of CVD. Further studies are needed to evaluate the clinical effect of Hcy and UA targeted intervention on arterial stiffness and cardiovascular health

    Soil moisture retrieval over agricultural fields from L-band multi-incidence and multitemporal PolSAR observations using polarimetric decomposition techniques

    Get PDF
    Surface soil moisture (SM) retrieval over agricultural areas from polarimetric synthetic aperture radar (PolSAR) has long been restricted by vegetation attenuation, simplified polarimetric scattering modelling, and limited SAR measurements. This study proposes a modified polarimetric decomposition framework to retrieve SM from multi-incidence and multitemporal PolSAR observations. The framework is constructed by combining the X-Bragg model, the extended double Fresnel scattering model and the generalised volume scattering model (GVSM). Compared with traditional decomposition models, the proposed framework considers the depolarisation of dihedral scattering and the diverse vegetation contribution. Under the assumption that SM is invariant for the PolSAR observations at two different incidence angles and that vegetation scattering does not change between two consecutive measurements, analytical parameter solutions, including the dielectric constant of soil and crop stem, can be obtained by solving multivariable nonlinear equations. The proposed framework is applied to the time series of L-band uninhabited aerial vehicle synthetic aperture radar data acquired during the Soil Moisture Active Passive Validation Experiment in 2012. In this study, we assess retrieval performance by comparing the inversion results with in-situ measurements over bean, canola, corn, soybean, wheat and winter wheat areas and comparing the different performance of SM retrieval between the GVSM and Yamaguchi volume scattering models. Given that SM estimation is inherently influenced by crop phenology and empirical parameters which are introduced in the scattering models, we also investigate the influence of surface depolarisation angle and co-pol phase difference on SM estimation. Results show that the proposed retrieval framework provides an inversion accuracy of RMSE<6.0% and a correlation of R≥0.6 with an inversion rate larger than 90%. Over wheat and winter wheat fields, a correlation of 0.8 between SM estimates and measurements is observed when the surface scattering is dominant. Specifically, stem permittivity, which is retrieved synchronously with SM also shows a linear relationship with crop biomass and plant water content over bean, corn, soybean and wheat fields. We also find that a priori knowledge of surface depolarisation angle, co-pol phase difference and adaptive volume scattering could help to improve the performance of the proposed SM retrieval framework. However, the GVSM model is still not fully adaptive because the co-pol power ratio of volume scattering is potentially influenced by ground scattering.This work was supported by the National Natural Science Foundation of China [grant numbers 61971318, 41771377, 41901286, 42071295, 41901284, U2033216]; the China Postdoctoral Science Foundation [grant number 2018M642914]. This work was supported in part by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI), and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P

    Postmortem Brain Imaging in Alzheimer\u27s Disease and Related Dementias: The South Texas Alzheimer\u27s Disease Research Center Repository

    Get PDF
    Background: Neuroimaging bears the promise of providing new biomarkers that could refine the diagnosis of dementia. Still, obtaining the pathology data required to validate the relationship between neuroimaging markers and neurological changes is challenging. Existing data repositories are focused on a single pathology, are too small, or do not precisely match neuroimaging and pathology findings. Objective: The new data repository introduced in this work, the South Texas Alzheimer’s Disease research center repository, was designed to address these limitations. Our repository covers a broad diversity of dementias, spans a wide age range, and was specifically designed to draw exact correspondences between neuroimaging and pathology data. Methods: Using four different MRI sequences, we are reaching a sample size that allows for validating multimodal neuroimaging biomarkers and studying comorbid conditions. Our imaging protocol was designed to capture markers of cerebrovascular disease and related lesions. Quantification of these lesions is currently underway with MRI-guided histopathological examination. Results: A total of 139 postmortem brains (70 females) with mean age of 77.9 years were collected, with 71 brains fully analyzed. Of these, only 3% showed evidence of AD-only pathology and 76% had high prevalence of multiple pathologies contributing to clinical diagnosis. Conclusion: This repository has a significant (and increasing) sample size consisting of a wide range of neurodegenerative disorders and employs advanced imaging protocols and MRI-guided histopathological analysis to help disentangle the effects of comorbid disorders to refine diagnosis, prognosis and better understand neurodegenerative disorders

    Association of TyG index and TG/HDL-C ratio with arterial stiffness progression in a non-normotensive population

    Get PDF
    Background: Cross-sectional studies have reported that insulin resistance (IR) is associated with arterial stiffness. However, the relationship between IR and arterial stiffness progression remains unclear. This study aims to evaluate the association of triglyceride glucose (TyG) index and triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio with arterial stiffness progression in a non-normotensive population. Methods: A total of 1895 prehypertensive (systolic pressure 120–139 mmHg or diastolic pressure 80–90 mmHg) or hypertensive (systolic pressure ≥ 140 mmHg or diastolic pressure ≥ 90 mmHg or using antihypertensive medication) participants were enrolled in 2013 and 2014, and followed until December 31, 2019. Arterial stiffness progression was measured by brachial-ankle pulse wave velocity (baPWV) change (absolute difference between baseline and last follow-up), baPWV change rate (change divided by following years), and baPWV slope (regression slope between examination year and baPWV). Results: During a median follow-up of 4.71 years, we observed an increasing trend of baPWV in the population. There were linear and positive associations of the TyG index and TG/HDL-C ratio with the three baPWV parameters. The difference (95% CI) in baPWV change (cm/s) comparing participants in the highest quartile versus the lowest of TyG index and TG/HDL-C ratio were 129.5 (58.7–200.0) and 133.4 (52.0–214.9), respectively. Similarly, the evaluated baPWV change rates (cm/s/year) were 37.6 (15.3–60.0) and 43.5 (17.8–69.2), while the slopes of baPWV were 30.6 (9.3–51.8) and 33.5 (9.0–58.0). The observed association was stronger in the hypertensive population. Conclusion: Our study indicates that the TyG index and TG/HDL-C ratio are significantly associated with arterial stiffness progression in hypertensive population, not in prehypertensive population

    MRI of Perfusion-Diffusion Mismatch in Non-Human Primate (Baboon) Stroke: A Preliminary Report

    Get PDF
    The goal of this study was to develop a clinically relevant non-human primate (baboon) stroke model and multi-parametric MRI protocols on a clinical scanner with long-term goals to better model human stroke and facilitate clinical translations of novel therapeutic strategies. Baboons were chosen because of their relatively large brain volume and that they are evolutionarily close to humans. Middle cerebral artery occlusion (MCAO) was induced using a minimally invasive endovascular approach to guide an inflatable balloon catheter into the MCA and followed by permanently or transiently inflate the balloon. Using multimodal MRI, including perfusion and diffusion imaging, the spatiotemporal dynamic evolution of the ischemic lesions in permanent and transient occlusion experiments in baboons were investigated. Perfusion-diffusion mismatch, which approximates the ischemic penumbra, was detected. In the permanent MCAO group (n = 2), the mean infarct volume was 29 ml (17% of total brain volume) whereas in the transient MCAO group (n = 2, 60 or 90 min of occlusion), the mean infarct volume was 15 ml (9% of total brain volume). Substantial perfusion-diffusion mismatch tissue (~50%) was salvaged by reperfusion compared to permanent MCAO. This baboon stroke model has the potential to become a translational platform to better design clinical studies, guide clinical diagnosis and improve treatment time windows in patients

    Combined evaluation of arterial stiffness and blood pressure promotes risk stratification of peripheral arterial disease

    Get PDF
    Background: Previous studies have reported the separate association of arterial stiffness (AS) and blood pressure with peripheral arterial disease (PAD). Objectives: The aim of this study was to investigate the risk stratification capacity of AS on incident PAD beyond blood pressure status. Methods: A total of 8,960 participants from Beijing Health Management Cohort were enrolled at the first health visit between 2008 and 2018 and then followed until the incidence of PAD or 2019. Elevated AS was defined as brachial-ankle pulse-wave velocity (baPWV) \u3e 1,400 cm/s, including moderate stiffness (1,400 ≤ baPWV \u3c 1,800 cm/s) and severe stiffness (baPWV ≥ 1,800 cm/s). PAD was defined as ankle-brachial index \u3c 0.9. A frailty Cox model was used to calculate the HR, integrated discrimination improvement, and net reclassification improvement. Results: During follow-up, 225 participants (2.5%) developed PAD. After adjusting for confounding factors, the highest risk for PAD was observed in the group with elevated AS and blood pressure (HR: 2.253; 95% CI: 1.472-3.448). Among participants with ideal blood pressure and those with well-controlled hypertension, PAD risk was still significant for severe AS. The results remained consistent in multiple sensitivity analyses. In addition, baPWV significantly improved the predictive capacity for PAD risk beyond systolic and diastolic blood pressures (integrated discrimination improvement 0.020 and 0.190, net reclassification improvement 0.037 and 0.303). Conclusions: This study suggests the clinical importance of combined evaluation and control of AS and blood pressure for the risk stratification and prevention of PAD
    • …
    corecore