217 research outputs found

    EPC-EXs Improve Astrocyte Survival and Oxidative Stress Through Different Uptaking Pathways in Diabetic Hypoxia Condition

    Get PDF
    Background: Hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. We confirmed that high glucose (HG) induces endothelial dysfunction and cerebral ischemic injury is enlarged in diabetic mice. Stem cell-released exosomes have been shown to protect the brain from ischemic stroke. We have previously shown that endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) can protect endothelial cells from hypoxia/reoxygenation (H/R) and HG-induced injury. Here, we aim to investigate the effects of EPC-EXs on astrocytes under H/R and HG-induced injury and whether miR-126 enriched EPC-EXs (miR126-EPC-EXs) have enhanced efficacy. Methods: EPC-EX uptake and co-localization were measured by fluorescent microscopy using PKH26 and DAPI staining. miR-126 enrichment was achieved by transfecting with miR-126 mimics and quantified with real-time PCR. After co-incubation, cell death or injury was measured by using LDH (Lactate Dehydrogenase) assay. Oxidative stress/ROS (reactive oxygen species) generation was measured by DHE (Dihydroethidium) staining and lipid peroxidation assay. Results: The EPC-EXs were effectively taken up by the astrocytes in a concentration as well as time-dependent manners and were co-localized within the nucleus as well as the cytoplasm. Pathway uptake inhibitors revealed that the EPC-EXs are effectively taken up by the clathrin-mediated, caveolin-dependent, and micropinocytosis via PI3K/Akt pathway. H/R and HG-induced a cell injury which could be protected by EPC-EXs evidenced by decreased cell cytotoxicity, oxidative stress, and lipid peroxidation. Moreover, miR-126 overexpression could increase the level of miR-126 in astrocytes and enhance the protective effects of EPC-EXs. Conclusions: These results collectively indicate that the EPC-EXs could protect astrocytes against the HG plus H/R-induced damage

    EPC-EXs Improve Neuronal Survival and Oxidative Stress Through Different Uptaking Pathways in Diabetic Hypoxia Condition

    Get PDF
    Background: Hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. We confirmed that high glucose (HG) induces endothelial dysfunction and cerebral ischemic injury is enlarged in diabetic mice. Stem cell-released exosomes have been shown to protect the brain from ischemic stroke. We have previously shown that endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) can protect endothial cells from hypoxia/reoxygenation (H/R) and HG-induced injury. Here, we aim to investigate the effects of EPC-EXs on astrocytes under H/R and HG-induced injury and whether miR-126 enriched EPC-EXs (EPC-EXsmiR126) have enhanced efficacy. Methods: EPC-EX uptake and co-localization were measured by fluorescent microscopy using PKH26 and DAPI staining. miR-126 enrichment was achieved by transfecting with miR-126 mimics and quantified with real-time PCR. After co-incubation, cell death or apoptosis was measured by using flow cytometric analysis and LDH (Lactate Dehydrogenase) assay. Oxidative stress/ROS (reactive oxygen species) generation was measured by DHE (Dihydroethidium) staining and lipid peroxidation assay. Results: The EPC-EXs were effectively taken up by the astrocytes in a concentration as well as time- dependent manners and were co-localized within the nucleus as well as the cytoplasm. Pathway uptake inhibitors revealed that the EPC-EXs are effectively taken up by the clathrin-mediated, caveolin-dependent, and micropinocytosis via PI3K/Akt pathway. H/R and HG-induced a cell injury which could be protected by EPC-EXs evidenced by decreased cell apoptosis, cell cytotoxicity, oxidative stress, and lipid peroxidation. Moreover, miR-126 overexpression could enhance the protective effects of EPC-EXs. Conclusions: These results collectively indicate that the EPC-EXs could protect astrocytes against the HG plus H/R-induced damage

    Exosomes From miRNA-126-Modified Endothelial Progenitor Cells Alleviate Brain Injury and Promote Functional Recovery After Stroke

    Get PDF
    Aims: We previously showed that the protective effects of endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) on endothelium in diabetes. However, whether EPC-EXs are protective in diabetic ischemic stroke is unknown. Here, we investigated the effects of EPC-EXs on diabetic stroke mice and tested whether miR-126 enriched EPC-EXs (EPC-EXs miR126 ) have enhanced efficacy. Methods: The db/db mice subjected to ischemic stroke were intravenously administrated with EPC-EXs 2 hours after ischemic stroke. The infarct volume, cerebral microvascular density (MVD), cerebral blood flow (CBF), neurological function, angiogenesis and neurogenesis, and levels of cleaved caspase-3, miR-126, and VEGFR2 were measured on day 2 and 14. Results: We found that (a) injected EPC-EXs merged with brain endothelial cells, neurons, astrocytes, and microglia in the peri-infarct area; (b) EPC-EXs miR126 were more effective than EPC-EXs in decreasing infarct size and increasing CBF and MVD, and in promoting angiogenesis and neurogenesis as well as neurological functional recovery; (c) These effects were accompanied with downregulated cleaved caspase-3 on day 2 and vascular endothelial growth factor receptor 2 (VEGFR2) upregulation till day 14. Conclusion: Our results indicate that enrichment of miR126 enhanced the therapeutic efficacy of EPC-EXs on diabetic ischemic stroke by attenuating acute injury and promoting neurological function recovery

    miR-132-3p Priming Enhances the Effects of Mesenchymal Stromal Cell-Derived Exosomes on Ameliorating Brain Ischemic Injury

    Get PDF
    Backgrounds/aims: Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods: Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXsmiR-132-3p). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results: MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXsmiR-132-3p were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXsmiR-132-3p was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion: Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions

    Moderate Exercise Enhances Endothelial Progenitor Cell Exosomes Release and Function

    Get PDF
    Purpose: Exercise has cardiovascular benefits which might be related to endothelial progenitor cells (EPC). Meanwhile, there is evidence suggesting that EPC-derived exosomes (EPC-EX) promote vascular repair and angiogenesis through their carried microRNA (miR)-126. In this study, we investigated whether exercise could increase the levels of circulating EPC-EX and their miR-126 cargo, and by which promote the protective function of EPC-EX on endothelial cells (EC). Methods: Plasma EPC-EX from sedentary, low, or moderate exercise mice, respectively, denoted as EPC-EXS, EPC-EXL, and EPC-EXM, were isolated using microbead-based sorting techniques and characterized by nanoparticle tracking analysis, Western blot, and quantitative real-time polymerase chain reaction assessments of biomarkers and miR-126. High glucose (25 mM) with hypoxia (1% O2) was used for inducing an EC injury model. The injured EC were treated by coculturing with vehicle, EPC-EXS, EPC-EXL, EPC-EXM, or EPC-EXM + anti–miR-126. After that, EC were used for flow cytometry analysis of apoptosis, assessments of tube formation and migration, and measurements of miR-126 level and its downstream sprouty-related protein-1 (SPRED1) and vascular endothelial growth factor (VEGF). Results: 1) Isolated EPC-EX positively expressed exosomal markers (CD63 and Tsg101) and EPC markers (CD34 and VEGFR2). 2) Exercise intensity dependently elevated plasma level of EPC, EPC-EX/EPC ratio, and miR-126 expression in EPC and EPC-EX. 3) Injured EC displayed apoptosis increment, angiogenic dysfunction and miR-126 reduction. 4) EPC-EXM had better effects than EPC-EXS and EPC-EXL on alleviating those changes of injured EC, accompanied with SPRED1 downregulation and VEGF upregulation. 5) The effects of EPC-EXM were abolished by miR-126 knockdown. Conclusions: Our data demonstrate that exercise can increase EPC-EX release and miR-126 level and enhance the effects of EPC-EX on protecting EC against injury through the SPRED1/VEGF pathway

    Prediction of 1p/19q Codeletion in Diffuse Glioma Patients Using Pre-operative Multiparametric Magnetic Resonance Imaging

    Get PDF
    Kim D, Wang N, Ravikumar V, Raghuram DR, Li J, Patel A, Wendt RE III, Rao G and Rao A (2019) Prediction of 1p/19q Codeletion in Diffuse Glioma Patients Using Pre-operative Multiparametric Magnetic Resonance Imaging. Front. Comput. Neurosci. 13:52. doi: 10.3389/fncom.2019.00052https://openworks.mdanderson.org/mdacc_imgphys_pubs/1005/thumbnail.jp

    NPC-EXs Alleviate Endothelial Oxidative Stress and Dysfunction through the miR-210 Downstream Nox2 and VEGFR2 Pathways

    Get PDF
    We have demonstrated that neural progenitor cells (NPCs) protect endothelial cells (ECs) from oxidative stress. Since exosomes (EXs) can convey the benefit of parent cells through their carried microRNAs (miRs) and miR-210 is ubiquitously expressed with versatile functions, we investigated the role of miR-210 in the effects of NPC-EXs on oxidative stress and dysfunction in ECs. NPCs were transfected with control and miR-210 scramble/inhibitor/mimic to generate NPC-EXscon, NPC-EXssc, NPC-EXsanti-miR-210, and NPC-EXsmiR-210. The effects of various NPC-EXs on angiotensin II- (Ang II-) induced reactive oxygen species (ROS) overproduction, apoptosis, and dysfunction, as well as dysregulation of Nox2, ephrin A3, VEGF, and p-VEGFR2/VEGFR2 in ECs were evaluated. Results showed (1) Ang II-induced ROS overproduction, increase in apoptosis, and decrease in tube formation ability, accompanied with Nox2 upregulation and reduction of p-VEGFR2/VEGFR2 in ECs. (2) Compared to NPC-EXscon or NPC-EXssc, NPC-EXsanti-miR-210 were less whereas NPC-EXsmiR-210 were more effective on attenuating these detrimental effects induced by Ang II in ECs. (3) These effects of NPC-EXsanti-miR-210 and NPC-EXsmiR-210 were associated with the changes of miR-210, ephrin A3, VEGF, and p-VEGFR2/VEGFR2 ratio in ECs. Altogether, the protective effects of NPC-EXs on Ang II-induced endothelial injury through miR-210 which controls Nox2/ROS and VEGF/VEGFR2 signals were studied
    corecore