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This study compared the predictive power and robustness of texture, topological, and

convolutional neural network (CNN) based image features for measuring tumors in

MRI. These features were used to predict 1p/19q codeletion in the MICCAI BRATS

2017 challenge dataset. Topological data analysis (TDA) based on persistent homology

had predictive performance as good as or better than texture-based features and

was also less susceptible to image-based perturbations. Features from a pre-trained

convolutional neural network had similar predictive performances and robustness as

TDA, but also performed better using an alternative classification algorithm, k-top scoring

pairs. Feature robustness can be used as a filtering technique without greatly impacting

model performance and can also be used to evaluate model stability.

Keywords: multiparametric MRI, image perturbation, radiomic features, glioma, persistent homology, 1p/19q

codeletion

BACKGROUND

1p/19q codeletion, is a genetic loss event that is somewhat rare in gliomas (Fuller and Perry, 2005;
Eckel-Passow et al., 2015). It involves the complete deletion of the short arm of chromosome 1
alongside the deletion of the long arm of chromosome 19. Patients with this genetic loss event have
been shown to have markedly improved prognosis and overall survival as compared to patients
without 1p/19q codeletion (Boots-Sprenger et al., 2013; Cairncross et al., 2013; Van M den et al.,
2013). The ability to identify patients from radiologic imaging would help to tailor treatment for
this subtype of brain cancer.

Radiomics is the study of tumor imaging data, and the use of the imaging features to predict
prognosis or genetic markers of these tumors. Radiological studies are standard of care for most
cancer patients, but genetic profiling is available only for a subset of cancer patients (Gillies et al.,
2015). Thus, understanding the relationship between tumor appearance on magnetic resonance
imaging (MRI) and the genetic profile of a tumor could help to predict prognosis or to subtype
tumors and thereby deliver more precise care to larger patient populations.

A number of publicly available datasets and toolkits exist for measuring texture-based features
on tumors (Clark et al., 2013; van Griethuysen et al., 2017). However, while there has been progress
in measuring these features, there is some concern about the robustness and generalizability of
radiomic features. Other studies on CT scans have shown that some texture-based features are
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not stable under perturbation in test-retest comparisons
(Bogowicz et al., 2016; van Timmeren et al., 2016). In order
further to assess the degree of instability, this study has
investigated the effect of image perturbations on additional
feature types beyond texture, and their eventual effect on
classification power in MRI scans.

METHODS

A set of brain MRI data were drawn from the MICCAI
BRATS 2017 challenge dataset (Menze et al., 2015; Bakas et al.,
2017a, 2018). The multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) 2017 dataset was originally designed
for the brain tumor segmentation challenge and comprises
pathologically confirmed LGG (n = 65) and HGG (n = 102)
cases from The Cancer Imaging Archive (TCIA) (Bakas et al.,
2017b,c). The dataset contains pre-operative multimodal MRI
sequences, namely T1, T1-post, T2, and FLAIR, and was acquired
with differing imaging/clinical protocols and scanners from
19 different institutions. All tumor volumes in the imaging
dataset had been segmented manually by one to four different
experienced neuroradiologists.

Genetic markers for this TCIA dataset were gathered from
The Cancer Genomics Archive (TCGA). The patients were first
retrospectively identified with histologically confirmed WHO
grade II-IV gliomas (n = 1,122) and their corresponding
1p/19q chromosome codeletion statuses (after surgical biopsy).
In addition, the patients’ age, gender, Karnofsky Performance
Score (KPS) were collected as clinical variables.

These four sequences were co-registered to the T1 post-
sequence as it had the highest spatial resolution. They were then
resampled to 1 × 1 × 1mm isotropically in an axial orientation
by using a linear interpolation algorithm. Then, all images were
skull-stripped to anonymize the patient information and remove
extraneous regions of the scan (Bauer et al., 2012).

The scans were prepared by performing N4 bias correction,
normalizing intensity values by interquartile range, and cropping
and reshaping to the volume of interest. Normalization of the
intensity was performed based on the interquartile range for a
particular modality of the non-tumor brain volume. The slices
were resampled to a 142 × 142 image size that was cropped to
the tumor area of interest. This methodology is similar to that
used by Chang et al. (2018a) in order to provide the type of input
that the neural network anticipated.

The breakdown of the dataset for 1p/19q codeletion vs. non-
codeleted cases was heavily skewed toward the non-codeleted
cases, with 13 cases with codeletion and 130 without codeletion.
As such, the codeleted cases were heavily oversampled in slice
selection at a 20:3 ratio to achieve a closer balance of class
ratio. The largest 20 image patch slices for each codeleted scan
was taken. For the non-codeleted scans the 50, 75, and 100th
percentile slices (based on size) were taken.

The dataset was split patient-by-patient into sets of 80% for
training and 20% for testing. This preserved the class ratio in the
training and testing sets, as the number of positive cases was so
low. This process was repeated 10 times independently for a total

of 10 independent splits. Each of these independent splits had
the entire analytic process performed to assess the robustness of
the results. The training set was used in 5-fold cross-validation
for each of the models, where patients were kept together in the
cross-validation folds.

The three types of features measured in these scans were
texture-based features, persistent homology topological features,
and features based on a pre-trained convolutional neural network
(Figure 1). The texture features were extracted slice-by-slice
using the Pyradiomics package (van Griethuysen et al., 2017).
The types of features were based on the tumor region of
interest on each of the modalities. The texture features that were
extracted included: first-order intensity features, shape features,
gray-level co-occurrence matrix features (GLCM), gray-level run
length matrix features (GLRLM), gray level size zone matrix
features (GLSZM), and neighboring gray-tone difference matrix
features (NGTDM).

It is well-known that MRI studies suffer from a variety
of noise sources, so the underlying integrity of the image
data carries some uncertainty. A topological approach was
evaluated to see if the features generated were less susceptible
to this uncertainty than traditional texture-based approaches.
These topological features were based on persistent homology
and how the topology changes with shifts in the image
intensity threshold. Barcodes describe when a connected
component or tunnel was created and destroyed by this shifting
threshold (Figure 2; Adcock et al., 2014). These barcodes were
collected with the GUDHI python package (Maria, 2015).

FIGURE 1 | Analysis pipeline: images are normalized, then the three types of

features were collected. These features are filtered with RFE and PCA, then

used to build a random forest model or logistic regression model. Image

perturbations are used as an additional filter by including only relatively robust

features. The kTSP algorithm used the same feature set to build its predictions.
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These barcodes were characterized by their polynomial features,
along with statistical features about their birth and death
intensities, bar lengths, and death intensity distribution. These
features were based on work in Adcock et al. (2013) and
Giansiracusa et al. (2017).

A pre-trained convolutional neural network (CNN) was used
to calculate deep learning-based features, from Chang’s work on
IDH1 mutation (Chang et al., 2018a). Chang’s model was useful
for this investigation as it focused on gliomas and featured the
same MRI modalities as were present in this study (T1, T2,
FLAIR, and T1-post). The second to last layer of the network was
used to extract features rather than to feed into a softmax layer
to predict IDH1 mutation. We expected the network to produce
some features that are relevant to this 1p/19q dataset because the
current work was of the same fundamental nature as the problem
in Chang’s work.

Two versions of feature reduction/selection were evaluated in
the training set of this study: recursive feature elimination (RFE)
and principal component analysis (PCA). RFE was performed
with 10-fold cross-validation, to determine the optimal number
of features (k), then the k best features were selected. PCA was
performed and a cutoff of 95% cumulative variance was used to
cull the insignificant components in PCA reduction.

Each of the feature sets—texture, topology, and CNN—had
feature selection performed, and then those features were fed
into a random forest model and a logistic regression model.
The models were tuned using 5-fold cross-validation with folds
that kept patients within the same fold. The random forest
models were optimized over a number of hyperparameters
including: tree counts of 200–2000, maximum depths of 10–
100, the minimum sample split, and minimum leaf size. The
logistic regression models had normalization hyperparameters

of L1 vs. L2 normalization, and regularization strength from
10−3 to 105.

The models were evaluated primarily on the held-out 20%
testing set, where area under the receiver operator curve
(AUROC), accuracy, sensitivity, and specificity were measured.
Additionally, combined models, which used features from

TABLE 1 | Test set statistics across 10 independent splits.

AUROC STD of

AUROC

Sensitivity Specificity Accuracy

Texture only RF RFE 0.660 0.120 0.782 0.558 0.669

Texture only LR RFE 0.566 0.139 0.775 0.479 0.629

Texture only RF PCA 0.527 0.071 0.543 0.644 0.581

Texture only LR PCA 0.502 0.093 0.573 0.610 0.583

TDA only RF RFE 0.698 0.085 0.653 0.738 0.682

TDA only LR RFE 0.710 0.094 0.723 0.675 0.692

TDA only RF PCA 0.626 0.132 0.647 0.648 0.638

TDA only LR PCA 0.691 0.135 0.677 0.694 0.676

CNN only RF RFE 0.708 0.139 0.905 0.546 0.727

CNN only LR RFE 0.644 0.110 0.775 0.565 0.669

CNN only RF PCA 0.672 0.133 0.627 0.750 0.675

CNN only LR PCA 0.673 0.081 0.823 0.546 0.686

Combined RF RFE 0.689 0.150 0.877 0.552 0.714

Combined LR RFE 0.685 0.135 0.770 0.638 0.700

Combined RF PCA 0.612 0.148 0.655 0.637 0.638

Combined LR PCA 0.675 0.121 0.865 0.525 0.698

Clinical per patient RF 0.713 0.106 0.667 0.854 0.800

Clinical per patient LR 0.577 0.097 0.467 0.819 0.759

Darker blue indicates improved AUROC.

FIGURE 2 | Examples of five types of image perturbation on a slice of the tumor (rotation, noise addition, translation, volume alteration, and contour alteration).
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texture, topology, and CNN, were also tested using the
same approach. The clinical patient characteristics (age, sex,
and Karnofsky performance score) were tested independently
to gauge their performance in comparison to the imaging-
based features.

Robustness of Features
Each of the image slices was perturbed using image processing
techniques to produce relatively small changes to the image
following the approach of Zwanenburg et al. (2019). Five classes
of perturbation were performed on the images: image rotation
(R), image translation (T), image Gaussian white noise addition
(N), mask volume alteration (V), and contour randomization
(C). Images and masks were rotated around the mask center of
mass to approximate changes in head position in the scanner.
Image translations involved subpixel shifts which resampled
the images on new slightly modified coordinate systems. Image
noise addition added randomized Gaussian noise based on the
noise levels of the original slice. Volume alteration grew or
shrank the mask based on the Euclidean distance transform
and the percentage of volume added or subtracted. Lastly,
contour randomization combined superpixel segmentation of
the underlying image with a probabilistic selection of those
superpixels based on their overlap with the mask to produce
altered contours (Figure 2).

Each of the altered images then had its texture and topological
features evaluated for the range of individual perturbations. For
each category of perturbation and each feature, the intraclass
correlation coefficient (ICC) was calculated to determine the
variability or robustness of that feature to the perturbation in

question. After calculating the ICC, any feature that had an ICC
of <0.75 for any of the perturbations was excluded from this
round of modeling. With that filter in place, the same modeling
procedure was followed to evaluate the predictive power of
texture and topological features across the 10 instances.

Classification With K-top Scoring Pairs
As an additional analysis, the same texture, topological, and CNN
features were used to train a model using the k-top scoring
pairs algorithm (kTSP). The kTSP algorithm classifies samples by
identifying k-pairs of features whose relative expressions/values
are inverted between the categories, i.e., it tries to find pairs
of genes A and B whose relative rankings are inverted in most
samples of the two cases. This gives an easy to interpret decision
rule and makes the classifier robust to data normalization
procedures. Given that different measurement technologies have
different dynamic ranges, classifiers based on relative rankings of
features rather than their absolute values are highly valuable for
integrating and comparing across multiple sources of data.

TABLE 2 | Test set statistics for kTSP algorithm.

AUROC STD of AUROC

Texture only kTSP 0.659 0.099

TDA only kTSP 0.686 0.083

CNN only kTSP 0.718 0.111

Darker blue indicates improved AUROC.

FIGURE 3 | Test set mean AUROC by feature type.
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The extracted CNN, textural, and topological features were
used to train a kTSP classifier for predicting patient 1p/19q
codeletion status using the switchbox R package (Afsari et al.,
2015). Since kTSP is a greedy algorithm, we retained only features
that were measured to be significantly differential between the
two classes (Wilcox test p < 0.1 after BH correction). We
then split the data into training and test sets (70:30 split)
and estimated classifier performance by measuring training and
test set roc values. Since the codeletion cases were heavily
resampled, we grouped features from the same patient together
while doing the train/test split so as to ensure that training
and testing cases are really independent. By repeating this
procedure for a total of 5,000 times and building classifiers
with k allowed to range between 3 and 15 pairs of features,
we estimated the 95% highest posterior density intervals for
train and test AUC values for classifiers built from the
three datasets.

RESULTS

Texture features were evaluated across the 10 independent
train/test splits to measure their predictive power (Table 1;
Figure 3). PCA-based feature reduction on texture features did
very poorly on the test set with an average AUROC across
the 10 train/test splits of 0.502 with linear regression (LR)
and 0.527 for random forest (RF). RFE achieved test set
AUROC values of 0.660 and 0.566 for LR and the RF models,
respectively. However, the standard deviation of AUROC across

the different splits was quite high (0.120, 0.139), suggesting
that with a small dataset, the models’ performance can be
somewhat unstable.

Features from topological data analysis were also evaluated
across the 10-independent training/testing splits (Table 1). In
this case, most of the analyses performed relatively similarly
in terms of AUROC, ranging from 0.626 to 0.710 for these
different models with topological features. Again, the standard
deviation of AUROC across the different training/testing
splits was relatively broad (0.085–0.135), though slightly lower
than that of the texture features. Texture and TDA features
overall had relatively similar performance, with a slight
edge to TDA features, though well-within the variability of
these statistics.

When modeled using random forests or logistic regression,
the CNN feature set had similar predictive performance to
topological features (Table 1). The AUROCs of these models fell
between 0.644 and 0.708. It also performed similarly with the
k-top scoring pairs (kTSP, Table 2) approach when compared to
the random forest (RF) or logistic regression (LR) with an average
AUROC of 0.718. Combining the three feature types neither
improved or decreased performance, suggesting that they were
not measuring vastly different types of information.

Overall, RFE somewhat outperformed PCA as a feature
selection tool, although the scale of the difference depended
on the feature set. Logistic regression had similar results to
random forest classification in most cases, although there were
some exceptions.

FIGURE 4 | Mean ICC of Texture features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Volume based perturbations had

the largest effect on the robustness of texture features, followed by contour alteration. There was a range of ICC values for the different features.

FIGURE 5 | Mean ICC of TDA features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Volume based perturbations had the

largest effect on ICC for topological features. Polynomial features 3 and 4 were the least robust to perturbation, while other TDA features were relatively stable.
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FIGURE 6 | Mean ICC of CNN features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). CNN based features were broadly

stable to perturbations, though still most affected by volume changes.

In terms of feature robustness, topological features had much
better ICC after perturbation than did the texture-based features.
Of the 356 texture features, an average of ∼117 features (32.8%)
had an ICC of <0.75 on the perturbations and were excluded
from this round of modeling (Figure 4). Of the 120 topological
features, an average of ∼10 (8.1%) had an ICC of <0.75, as such
most of the features were included in the next round of modeling
(Figure 5). Only an average of ∼3 of the CNN features (0.15%)
were excluded at the 0.75 ICC cutoff (Figure 6).

The perturbation types which had the lowest average ICC
were volume perturbation and contour alteration. Noise addition
and translation had little impact on the ICC values for texture
and TDA features. Volume alteration, and contour alteration
both affect the segmentation mask of the tumor without an
impact on the underlying image. This does, however, affect the
region investigated by topological and texture features. Notably,
when looking at stability in texture features by the class of
feature, shape-based features performed poorly under volume-
based alterations and were affected by rotation more than the
other classes (Figure 4). Overall, GLCM-based measures were
the most stable of the texture features as a class under these
perturbations (Figure 7). Among the TDA features, polynomial
features 3 and 4 were the least robust to perturbation, suggesting
higher order polynomial features are less stable than lower order
features (Figure 5).

Features that had a low ICC were excluded and the models
were retrained on the reduced feature set. Then the predictive
power of these models was measured on the testing set.
Overall, when excluding non-robust features from modeling, the
performance of the models dropped slightly in terms of AUROC,
although most had relatively similar power (Table 3; Figure 8).

Increasing the ICC cutoff would increase the number of
features excluded from the analysis. Thus, this effect was
further studied for each type of image perturbation (Figure 9).
Texture features are broadly susceptible to contour and volume
alterations. A subset of texture features was susceptible to
rotation effects as well, although very few features were affected
by the noise or translation perturbations. CNN features had
a relatively narrow range of ICC values, and TDA features
were broadly stable, though a subset of TDA features were
less robust.

DISCUSSION

In this study, topological data features performed as well as
or better than texture features in predicting 1p/19q codeletion
status. However, model performance varied across the different

training and testing splits of the data, as evidenced by the
standard deviation of model performance. CNN-based features
also had similar performance to topological features with random
forest and logistic regression, but they performed notably better
with kTSP as the modeling algorithm.

One concern, however, is the relatively small sample size
of 143 patients, of whom only 13 had the 1p/19q codeletion.
This may be a large factor in the uncertainty in the prediction
estimates. Oversampling the 1p/19q codeletion alleviates the class
imbalance somewhat, but raises some concerns about overfitting,
especially in models like random forest. Finding additional MRI
studies with confirmed 1p/19q codeletion would improve the
generalizability of any models derived from this data.

The kTSP algorithm is more often used in gene expression
array data but can be applied just as easily to other large-scale
datasets. By finding pairs of features that have different relative
orderings in the two sets, kTSP is less dependent on the absolute
magnitude of change than are the other methods. It also benefits
from having a large number of features to search that have
positive and negative associations with the target classification.
As the CNN features are not human-designed features, and
there is a larger set of CNN features with more variability in
direction, kTSP seems to take better advantage of these features
than features like TDA or texture.

Traditional radiomics features based on gray levels, such as
GLCMs can be dependent on the number and boundaries of
gray level bins. Volume and contour-based alterations affect the
set of pixels under investigation, which could heavily influence
the resulting texture matrices. Topological barcodes have been
found to be mostly stable under image-based perturbations
of the data, as have the CNN-based features from this pre-
trained model.

While other groups have also used radiomic features or
neural networks to predict 1p/19q codeletion, this paper seeks
to compare multiple potential approaches (Han et al., 2018;
Lu et al., 2018; Zhou et al., 2019). Other papers have trained
neural networks to predict 1p/19q codeletion, whereas this
study only used a pre-trained neural network on the dataset
(Akkus et al., 2017; Chang et al., 2018b). One weakness of
this approach was that the testing AUROCs of the models
in this study were not as high as some that have been
reported in other studies. However, this study was also able
to evaluate the robustness of these features through image
perturbation. Additionally, the models in this study incorporated
topological features based on persistent homology, which had
better performance than radiomic features and were more stable
to perturbation.
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FIGURE 7 | Mean ICC of Texture features by feature class. (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Changes in

volume had the largest effect on the stability of radiomic features. The least stable class of features were the shape-based features, whereas GLCM and first-order

features were more stable.

TABLE 3 | Test set statistics, after exclusion of unstable features.

AUROC STD of

AUROC

Sensitivity Specificity Accuracy

Texture only RF RFE 0.637 0.084 0.758 0.569 0.661

Texture only LR RFE 0.563 0.120 0.775 0.512 0.644

Texture only RF PCA 0.505 0.097 0.552 0.625 0.577

Texture only LR PCA 0.501 0.062 0.532 0.625 0.568

TDA only RF RFE 0.660 0.090 0.685 0.635 0.652

TDA only LR RFE 0.659 0.126 0.635 0.712 0.662

TDA only RF PCA 0.614 0.090 0.767 0.569 0.649

TDA only LR PCA 0.649 0.140 0.655 0.613 0.627

CNN only RF RFE 0.691 0.146 0.870 0.567 0.721

CNN only LR RFE 0.668 0.118 0.867 0.510 0.692

CNN only RF PCA 0.681 0.121 0.725 0.644 0.679

CNN only LR PCA 0.674 0.081 0.847 0.531 0.691

Combined RF RFE 0.681 0.146 0.860 0.552 0.707

Combined LR RFE 0.660 0.117 0.830 0.540 0.687

Combined RF PCA 0.650 0.163 0.760 0.619 0.686

Combined LR PCA 0.684 0.111 0.835 0.569 0.703

Darker blue indicates improved AUROC.

Clinical value is more difficult to assess than statistical
significance, as it is dependent on the prognostic value
of the biomarker, the current standard of care, and the
predictive power of the model. 1p/19q codeletion is typically
evaluated through genetic testing of a tissue sample, whereas
the benefit of a radiogenomic approach is to evaluate the
imaging markers of a tumor without biopsy or resection.
However, as many glioma patients receive a biopsy for
diagnostic purposes, a radiogenomic model would have to
be exceptionally predictive to warrant replacement of this
procedure. This study aims more to understand the types
of features radiogenomic approaches are detecting, and how
robust they are in different conditions rather than to replace
the test.

FUTURE DIRECTIONS

While this study used the image perturbation parameter space
of the Zwanenberg paper, it would be worthwhile to tune
the tested space of parameters further. The level of noise is
based on wavelet estimation, but by visual inspection is not
apparent until the noise level is increased by 1–2 orders of
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FIGURE 8 | Filtered features test set mean AUROC.

FIGURE 9 | ICC Threshold effect by perturbation type. The ICC cutoff for features is varied from 0 to 1, and the percentage of features that survive each threshold is

recorded by perturbation type.

magnitude. Additional levels of noise could be investigated,
as could the types of noise, such as changing the noise to
a Rician distribution or adding the noise to k-space rather
than the image domain. However, as these perturbations
take each measurement and multiply it out by orders of
magnitude, the computational demands can add up quickly.
Thus, there is a tradeoff between perturbation complexity, the
size of the parameter space, and the certainty of the resulting
robustness measure.

Further investigation of the robustness of these measures
could be done by simulating scans from the underlying
physics, using a Bloch equation simulator (Ford et al., 2018).
This would allow for measuring the effect of variable image

collection parameters such as TE, TR, and field strength.
Understanding these effects would help to account for concerns
about variability in the underlyingMRI protocols. Unfortunately,
these simulations are primarily of normal brain images, so may
not fully reflect the interaction between tumor tissue alteration
and image feature robustness.

DATA AVAILABILITY
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