16 research outputs found
Helical Luttinger liquid on the edge of a 2-dimensional topological antiferromagnet
Boundary helical Luttinger liquid (HLL) with broken bulk time-reversal
symmetry belongs to a unique topological class which may occur in
antiferromagnets (AFM). Here, we search for signatures of HLL on the edge of a
recently discovered topological AFM, MnBi2Te4 even-layer. Using scanning
superconducting quantum interference device, we directly image helical edge
current in the AFM ground state appearing at its charge neutral point. Such
helical edge state accompanies an insulating bulk which is topologically
distinct from the ferromagnetic Chern insulator phase as revealed in a magnetic
field driven quantum phase transition. The edge conductance of the AFM order
follows a power-law as a function of temperature and source-drain bias which
serves as strong evidence for HLL. Such HLL scaling is robust at finite fields
below the quantum critical point. The observed HLL in a layered AFM
semiconductor represents a highly tunable topological matter compatible with
future spintronics and quantum computation
On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers
Circulant and skew circulant matrices have become an important tool in networks engineering. In this paper, we consider skew circulant type matrices with any continuous Fibonacci numbers. We discuss the invertibility of the skew circulant type matrices and present explicit determinants and
inverse matrices of them by constructing the transformation matrices. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius) norm, and the maximum row sum matrix norm and bounds for the spread of these matrices are given, respectively
A late Neoarchaean–early Palaeoproterozoic crustal thickening event in the eastern North China Craton: petrological and geochronological evidence from Eastern Hebei terrane
<p>Determining an age framework for Precambrian crystalline rocks and associated granulite-facies metamorphism of the inner blocks in the North China Craton (NCC) is important for determining the tectonic setting and evolution of the craton during the Neoarchaean–Palaeoproterozoic. The Eastern Hebei terrane (EHT), located in the Eastern Block of the NCC, is composed of tonalitic-trondhjemitic-granodioritic (TTG) gneisses and potassium-rich granitoids, along with rafts of supracrustal rocks that are intruded by basic dikes. TTG gneisses in the EHT yield crystallization ages of 2516–2527 Ma. The oldest age of inherited zircons from a mylonitic TTG gneiss is ~2918 Ma. Granulite-facies supracrustal metamorphic rocks in the Zunhua high-grade meta-greenstone belt indicate an andesitic/basaltic protolith that was formed at ~2498 Ma. A syn-deformational granite in the Jinchangyu greenschist-facies shear zone yields a crystallization age of ~2474 Ma. Metamorphism of the supracrustal rocks and mylonitic greenschist took place at ~2461 and ~2475 Ma, respectively. Rare earth elements (REE) patterns and slightly negative Nb and Ta anomalies indicate that the magmatic precursors of the supracrustal rocks might be derived from partial melting of a sub-arc mantle wedge and metasomatized by fluids derived from a subducting slab. These rocks plot in the island arc basalts (IAB) field on a La/Nb vs. La diagram, further supporting this interpretation. The microstructures of a garnet–two-pyroxene granulite indicate an approximately clockwise P-T path. The crystallization ages of the TTG gneisses represent periods of the major crustal growth in the NCC, and the granulite- and greenschist-facies metamorphism indicates an orogenic event that involved crustal thickening at ~2.47 Ga.</p
Numerical Investigation on Hydrodynamic Characteristics of Immersed Buoyant Platform
The Next Generation Subsea Production System (NextGen SPS) is considered as a competitive alternative system used for offshore petroleum production in ultra-deep sea based on the artificial seabed technology. The Immersed Buoyant Platform (IBP), which is located at a constant depth below the free surface of the water to minimize wave loading, provides a buoyant stable platform for supporting the well completion equipment. Therefore, the hydrodynamic characteristics of IBP in the currents play an essential role in determining the global responses of NextGen SPS. In this paper, aiming at acquiring an optimum structural form of IBP, the hydrodynamic characteristics of the flow past the cylindrical IBP with different height-to-diameter ratios are systematically investigated by use of the large eddy simulation (LES) approach. The simulations with fifteen different height-to-diameter ratios (H/D) are investigated. The Reynolds numbers are ranged from 0.94×106 to 3.45×106. It can be verified that the separated fluid reattaches on the surface of the cylinder when the aspect ratio is between 0.1 and 0.4. Due to the specific shape ratio and obvious 3D effect of the cylindrical IBP, no significant vortex shedding has been clearly observed when the aspect ratio is between 0.1 and 0.4. In the case of 0.4≤H/D≤5.0, a series of regular and alternating vortex street shedding appear behind the circular cylinder. The simulation results also show that the recirculation region length behind the cylindrical IBP can be significantly reduced with the decreasing aspect ratio. It can be concluded that the cylindrical IBP performs the best hydrodynamic characteristics when the aspect ratio is between 0.3 and 0.4. The research findings will be of great significance to providing valuable reference and foundation to determine the optimum form of underwater structures, such as the buoyancy cans of the hybrid riser system
Spatio-Temporal Variation of Habitat Quality for Bird Species in China Caused by Land Use Change during 1995–2015
The analysis of land use change (LUC) has become an important criterion for evaluating the impact of human activities on the natural environment. Habitat loss and degradation caused by LUC are the main threats to biodiversity worldwide. Research on the impact of long-term, wide-scope, and fine-scale LUC on bird habitats is currently limited due to a lack of adequate data. In this study, conducted in China, 9 km grid units were sampled randomly between 1995 and 2015. Logistic regression was used to calculate the probability that each unit grid contained suitable habitat (hereinafter, abbreviated as PGSH) for 981 bird species and analyze the spatial-temporal characteristics of PGSH accordingly. The results showed that: (1) The habitat quality of 84 bird species deteriorated, but for 582 bird species, habitat quality improved. (2) There is an inverted U-shaped relationship between the intensity of LUC and the PGSH. The LUC intensity threshold is approximately 67.21%. (3) Based on the counterfactual scenario analysis, the construction of the Three North Shelterbelt has increased the PGSH for all bird species from 20.76% before restoration to 21.38% after restoration. Within the LUC grid representing the transformation of farmland back to forests, the average PGSH for all birds increased from 73.97% to 75.04%. These results may provide a reference for measuring the impacts of LUC on bird species, enabling the protection of bird species and habitats that need it most
Numerical Investigation on Hydrodynamic Characteristics of Immersed Buoyant Platform
The Next Generation Subsea Production System (NextGen SPS) is considered as a competitive alternative system used for offshore petroleum production in ultra-deep sea based on the artificial seabed technology. The Immersed Buoyant Platform (IBP), which is located at a constant depth below the free surface of the water to minimize wave loading, provides a buoyant stable platform for supporting the well completion equipment. Therefore, the hydrodynamic characteristics of IBP in the currents play an essential role in determining the global responses of NextGen SPS. In this paper, aiming at acquiring an optimum structural form of IBP, the hydrodynamic characteristics of the flow past the cylindrical IBP with different height-to-diameter ratios are systematically investigated by use of the large eddy simulation (LES) approach. The simulations with fifteen different height-to-diameter ratios (H/D) are investigated. The Reynolds numbers are ranged from 0.94×106 to 3.45×106. It can be verified that the separated fluid reattaches on the surface of the cylinder when the aspect ratio is between 0.1 and 0.4. Due to the specific shape ratio and obvious 3D effect of the cylindrical IBP, no significant vortex shedding has been clearly observed when the aspect ratio is between 0.1 and 0.4. In the case of 0.4≤H/D≤5.0, a series of regular and alternating vortex street shedding appear behind the circular cylinder. The simulation results also show that the recirculation region length behind the cylindrical IBP can be significantly reduced with the decreasing aspect ratio. It can be concluded that the cylindrical IBP performs the best hydrodynamic characteristics when the aspect ratio is between 0.3 and 0.4. The research findings will be of great significance to providing valuable reference and foundation to determine the optimum form of underwater structures, such as the buoyancy cans of the hybrid riser system
Integrative intrinsic time-scale decomposition and hierarchical temporal memory approach to gearbox diagnosis under variable operating conditions
Gearbox diagnosis under stationary operating conditions has been extensively investigated; however, variable operating conditions such as load and speed changes play important roles in affecting the accuracy of gearbox diagnosis. This article presents an integrative approach of intrinsic time-scale decomposition and hierarchical temporal memory for gearbox diagnosis under variable operating conditions. A total of two modules are emphasized including a feature extraction method and an integrative feature fusion and classification model. Intrinsic time-scale decomposition method is investigated to extract the gearbox features which are insensitive to variable operating conditions, and its performance overcomes the commonly used empirical mode decomposition in terms of decomposition result and computational efficiency. Hierarchical temporal memory integrates feature fusion and pattern classification in one model to autonomously diagnose gearbox defect. Performance comparison among the presented method, back-propagation neural network, support vector machine, and fuzzy c-means clustering using experimental data demonstrate the effectiveness of the presented method
A Two-Stage Fuzzy Optimization Model for Urban Land Use: A Case Study of Chongzhou City
Under the background of New-type Urbanization, with the continuous advancement of urbanization and the all-round development of cities, all kinds of demands are also rising. In the case of demand, it is difficult to quickly adjust from the land supply side and to guide the optimization of the structure and layout of land use is one of the methods to achieve this based on the current situation and shortage of urban land use structure and spatial arrangement. Because of the complexity, uncertainty and dynamics of the land use system, it is necessary to use an uncertain model to accurately describe and propose the approximate optimal solution, so this study analyzes the influencing mechanism of land use and optimize the land use structure under uncertainties by using a Bayesian network and fuzzy mathematical programming. Based on the results of the two stages of analysis, the cellular automata simulation is completed. The framework is applied to Chongzhou city in western China. The results indicated that the optimal land space for cultivated land is in the middle and the south based on the joint influence probability of arable land and urban construction land. The conversion probability of the area near the east is low, and the joint impact probability of construction land in all areas is generally similar except for the western protection area. After the optimization of the fuzzy planning, the optimal construction land scale is 69.42 km2. Under the condition that the cultivated land’s red line is guaranteed, there is still 98.87 km2 of space for the increase in cultivated land. It is found through simulation that the increase in construction land would occur in the central and western parts of Chongzhou, which may be caused by the urban siphon effect. According to Monte Carlo verification, when the conversion probability exceeds 50%, the cultivated land could be turned into urban construction land, with an accuracy of 91.99%. Therefore, this proposed framework is helpful to understand the process of land use and provides a reference for making scientific and reasonable territorial spatial planning and guiding land use practice under uncertainties
A Two-Stage Fuzzy Optimization Model for Urban Land Use: A Case Study of Chongzhou City
Under the background of New-type Urbanization, with the continuous advancement of urbanization and the all-round development of cities, all kinds of demands are also rising. In the case of demand, it is difficult to quickly adjust from the land supply side and to guide the optimization of the structure and layout of land use is one of the methods to achieve this based on the current situation and shortage of urban land use structure and spatial arrangement. Because of the complexity, uncertainty and dynamics of the land use system, it is necessary to use an uncertain model to accurately describe and propose the approximate optimal solution, so this study analyzes the influencing mechanism of land use and optimize the land use structure under uncertainties by using a Bayesian network and fuzzy mathematical programming. Based on the results of the two stages of analysis, the cellular automata simulation is completed. The framework is applied to Chongzhou city in western China. The results indicated that the optimal land space for cultivated land is in the middle and the south based on the joint influence probability of arable land and urban construction land. The conversion probability of the area near the east is low, and the joint impact probability of construction land in all areas is generally similar except for the western protection area. After the optimization of the fuzzy planning, the optimal construction land scale is 69.42 km2. Under the condition that the cultivated land’s red line is guaranteed, there is still 98.87 km2 of space for the increase in cultivated land. It is found through simulation that the increase in construction land would occur in the central and western parts of Chongzhou, which may be caused by the urban siphon effect. According to Monte Carlo verification, when the conversion probability exceeds 50%, the cultivated land could be turned into urban construction land, with an accuracy of 91.99%. Therefore, this proposed framework is helpful to understand the process of land use and provides a reference for making scientific and reasonable territorial spatial planning and guiding land use practice under uncertainties
Research on Urban Spatial Connection and Network Structure of Urban Agglomeration in Yangtze River Delta—Based on the Perspective of Information Flow
Exploration of urban spatial connections and network structures of urban agglomeration in the Yangtze River Delta, as well as its influencing factors, is of great significance regarding optimization of the development pattern of the Yangtze River Delta urban agglomeration and promotion of regional high-quality development. Therefore, based on Baidu index data in 2015 and 2019, this paper first analyzes the spatiotemporal variation characteristics of information-flow connections in the Yangtze River Delta urban agglomeration. Then it uses social network analysis to explore the information-flow network structure in the Yangtze River Delta urban agglomeration, and finally explores the influencing factors of information-flow intensity in the Yangtze River Delta urban agglomeration. The main conclusions are as follows: (1) The total amount of information flow in the Yangtze River Delta urban agglomeration has had no obvious change, and the coverage of information flow in the central urban circle has expanded. (2) The network hierarchy presents a relatively stable “pyramid” distribution pattern, which tends to develop into a “spindle” pattern. (3) The overall network density of the Yangtze River Delta urban agglomeration is high and is increasing. The backbone network is a “triangle” structure. The central cities in the region are stable, and the subgroups are adjacent to each other geographically. (4) Gross Domestic Product, resident population of the region and the number of Internet broadband subscribers all have important effects on the total information flow, among which the number of Internet broadband subscribers has the greatest effect on the total information flow. In addition, urban functions and their positioning, urban events, history and culture, and other factors that are difficult to quantify also have a certain impact on the information-flow network among cities