122 research outputs found

    DsMtGCN: A Direction-sensitive Multi-task framework for Knowledge Graph Completion

    Full text link
    To solve the inherent incompleteness of knowledge graphs (KGs), numbers of knowledge graph completion (KGC) models have been proposed to predict missing links from known triples. Among those, several works have achieved more advanced results via exploiting the structure information on KGs with Graph Convolutional Networks (GCN). However, we observe that entity embeddings aggregated from neighbors in different directions are just simply averaged to complete single-tasks by existing GCN based models, ignoring the specific requirements of forward and backward sub-tasks. In this paper, we propose a Direction-sensitive Multi-task GCN (DsMtGCN) to make full use of the direction information, the multi-head self-attention is applied to specifically combine embeddings in different directions based on various entities and sub-tasks, the geometric constraints are imposed to adjust the distribution of embeddings, and the traditional binary cross-entropy loss is modified to reflect the triple uncertainty. Moreover, the competitive experiments results on several benchmark datasets verify the effectiveness of our model

    Transparent Assessment of the Supervision Information in China's Food Safety: A Fuzzy-ANP Comprehensive Evaluation Method

    Get PDF
    Improving transparency of food safety supervision information can reduce the occurrence of information asymmetry, decrease food safety incidents, and promote socially joint regulation for food safety. In this study, an index system of food safety supervision information transparency (FSSIT) is constructed using the fuzzy-ANP comprehensive evaluation model. Using this system, the FSSIT in China is evaluated. A total of 1651 questionnaires containing 139525 data are collected from food and drug administration (FDA), consumer association (CA), and media at the central, provincial, prefectural, and county levels. Empirical results indicate that the FSSIT achieves a qualified level; however, the works of FDA, CA, and media still present deficiencies. The information transparency in the entirety presents deficiencies and gradually declines when that in the administrative level decreases. The economic development level indirectly determines the transparency level, and the transparency level does not conform to China's current economic development level

    Conditional Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnology

    Get PDF
    A guide RNA (gRNA) directs the function of a CRISPR protein effector to a target gene of choice, providing a versatile programmable platform for engineering diverse modes of synthetic regulation (edit, silence, induce, bind). However, the fact that gRNAs are constitutively active places limitations on the ability to confine gRNA activity to a desired location and time. To achieve programmable control over the scope of gRNA activity, here we apply principles from dynamic RNA nanotechnology to engineer conditional guide RNAs (cgRNAs) whose activity is dependent on the presence or absence of an RNA trigger. These cgRNAs are programmable at two levels, with the trigger-binding sequence controlling the scope of the effector activity and the target-binding sequence determining the subject of the effector activity. We demonstrate molecular mechanisms for both constitutively active cgRNAs that are conditionally inactivated by an RNA trigger (ON → OFF logic) and constitutively inactive cgRNAs that are conditionally activated by an RNA trigger (OFF → ON logic). For each mechanism, automated sequence design is performed using the reaction pathway designer within NUPACK to design an orthogonal library of three cgRNAs that respond to different RNA triggers. In E. coli expressing cgRNAs, triggers, and silencing dCas9 as the protein effector, we observe a median conditional response of ≈4-fold for an ON → OFF “terminator switch” mechanism, ≈15-fold for an ON → OFF “splinted switch” mechanism, and ≈3-fold for an OFF → ON “toehold switch” mechanism; the median crosstalk within each cgRNA/trigger library is <2%, ≈2%, and ≈20% for the three mechanisms. To test the portability of cgRNA mechanisms prototyped in bacteria to mammalian cells, as well as to test generalizability to different effector functions, we implemented the terminator switch in HEK 293T cells expressing inducing dCas9 as the protein effector, observing a median ON → OFF conditional response of ≈4-fold with median crosstalk of ≈30% for three orthogonal cgRNA/trigger pairs. By providing programmable control over both the scope and target of protein effector function, cgRNA regulators offer a promising platform for synthetic biology

    Contextual Dictionary Lookup for Knowledge Graph Completion

    Full text link
    Knowledge graph completion (KGC) aims to solve the incompleteness of knowledge graphs (KGs) by predicting missing links from known triples, numbers of knowledge graph embedding (KGE) models have been proposed to perform KGC by learning embeddings. Nevertheless, most existing embedding models map each relation into a unique vector, overlooking the specific fine-grained semantics of them under different entities. Additionally, the few available fine-grained semantic models rely on clustering algorithms, resulting in limited performance and applicability due to the cumbersome two-stage training process. In this paper, we present a novel method utilizing contextual dictionary lookup, enabling conventional embedding models to learn fine-grained semantics of relations in an end-to-end manner. More specifically, we represent each relation using a dictionary that contains multiple latent semantics. The composition of a given entity and the dictionary's central semantics serves as the context for generating a lookup, thus determining the fine-grained semantics of the relation adaptively. The proposed loss function optimizes both the central and fine-grained semantics simultaneously to ensure their semantic consistency. Besides, we introduce two metrics to assess the validity and accuracy of the dictionary lookup operation. We extend several KGE models with the method, resulting in substantial performance improvements on widely-used benchmark datasets

    Discussion on the value of 48h ambulatory electrocardiogram

    Get PDF
    Objective: The statistical number of cases was 73 times. 66 patients entered the study, including 31 males and 35 females, aged from 17 to 86 years. Firstly, the accurate big data analysis was carried out on 66 cases of ambulatory ECG, and then the corresponding time that can be compared and analyzed before and after 24h was determined through the time (T) RR interval scatter diagram. The changes of 24h ECG scatter diagram were observed, and the total number of heart beats and the number of premature beats were counted by the scatter diagram technique, and then compared and analyzed according to the type of arrhythmia. Results: A frequent or occasional premature beats: 52 patients (59 times), 26 males and 26 females, aged (56.1 ± 15.4) years; the effective analysis duration was (22.40 ± 1.19) H. There was a significant correlation between the number of heart beats before and after treatment (r=0.934, p=0.000). b. Persistent arrhythmia: 4 cases of persistent atrial fibrillation (referred to as atrial fibrillation), 1 case of frequent atrial and ventricular concurrent arrhythmia, 2 males and 3 females, aged (68.4 ± 9.4) years; the effective analysis duration was (22.68 ± 0.74) H. The t-RR scatter plot and Lorenz RR scatter plot of these patients had self-similarity before and after 24h. There was no significant difference in the total heart beat number before and after 24h[(111796 ± 16439) vs (111262 ± 16421), p=0.624], and the total heart beat number before and after 24h was significantly correlated (r=0.991, p=0.001); the qualitative diagnosis of long interval in 3 patients with atrial fibrillation was consistent 24 hours before and after diagnosis. c. Paroxysmal arrhythmia: 9 cases, 3 cases of paroxysmal atrial flutter, 5 cases of paroxysmal atrial fibrillation, and 1 case of paroxysmal vertical separation of sinus node function. There were 3 males and 6 females. The age was (71.2 ± 12.7) years. The effective analysis duration was (22.67 ± 0.74) H. Conclusion: 24h ambulatory ECG can meet the requirements for patients with frequent or occasional premature beats and persistent arrhythmias, while 48h ambulatory ECG may be necessary for patients with paroxysmal arrhythmias

    Conditional Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnology

    Get PDF
    A guide RNA (gRNA) directs the function of a CRISPR protein effector to a target gene of choice, providing a versatile programmable platform for engineering diverse modes of synthetic regulation (edit, silence, induce, bind). However, the fact that gRNAs are constitutively active places limitations on the ability to confine gRNA activity to a desired location and time. To achieve programmable control over the scope of gRNA activity, here we apply principles from dynamic RNA nanotechnology to engineer conditional guide RNAs (cgRNAs) whose activity is dependent on the presence or absence of an RNA trigger. These cgRNAs are programmable at two levels, with the trigger-binding sequence controlling the scope of the effector activity and the target-binding sequence determining the subject of the effector activity. We demonstrate molecular mechanisms for both constitutively active cgRNAs that are conditionally inactivated by an RNA trigger (ON → OFF logic) and constitutively inactive cgRNAs that are conditionally activated by an RNA trigger (OFF → ON logic). For each mechanism, automated sequence design is performed using the reaction pathway designer within NUPACK to design an orthogonal library of three cgRNAs that respond to different RNA triggers. In E. coli expressing cgRNAs, triggers, and silencing dCas9 as the protein effector, we observe a median conditional response of ≈4-fold for an ON → OFF “terminator switch” mechanism, ≈15-fold for an ON → OFF “splinted switch” mechanism, and ≈3-fold for an OFF → ON “toehold switch” mechanism; the median crosstalk within each cgRNA/trigger library is <2%, ≈2%, and ≈20% for the three mechanisms. To test the portability of cgRNA mechanisms prototyped in bacteria to mammalian cells, as well as to test generalizability to different effector functions, we implemented the terminator switch in HEK 293T cells expressing inducing dCas9 as the protein effector, observing a median ON → OFF conditional response of ≈4-fold with median crosstalk of ≈30% for three orthogonal cgRNA/trigger pairs. By providing programmable control over both the scope and target of protein effector function, cgRNA regulators offer a promising platform for synthetic biology

    Polyhedral Carbon Anchored on Carbon Nanosheet with Abundant Atomic Fe-Nx Moieties for Oxygen Reduction

    Get PDF
    Carbon-based single-atom iron electrocatalysts with nitrogen coordination (CSAIN) have recently shown enormous promise to replace the costly Pt for boosting the cathodic oxygen reduction reaction (ORR) in fuel cells. However, there remains a great challenge to achieve highly efficient CSAIN catalysts for the ORR in acidic electrolytes. Herein, a novel CSAIN catalyst is synthesized by pyrolyzing a precursor mixture consisting of metal–organic framework and conductive polymer hybrid. After pyrolysis at a high temperature, the CSAIN with a structure of carbon nanosheet supported polyhedral carbon is achieved, where the unique structure endows CSAIN with expediting electron transfer and mass transport, as well as largely exposed surface to host atomically dispersed iron active sites. As a result, the optimal CSAIN catalyst shows a high ORR activity with its half-wave potential of 0.77 V (vs RHE) and a Tafel slope of 74.1 mV dec–1, which are comparable to that of commercial Pt/C catalyst (0.80 V and 81.9 mV dec–1)

    The Overseeing Mother: Revisiting the Frontal-Pose Lady in the Wu Family Shrines in Second Century China

    Get PDF
    Located in present-day Jiaxiang in Shandong province, the Wu family shrines built during the second century in the Eastern Han dynasty (25–220) were among the best-known works in Chinese art history. Although for centuries scholars have exhaustively studied the pictorial programs, the frontal-pose female image situated on the second floor of the central pavilion carved at the rear wall of the shrines has remained a question. Beginning with the woman’s eyes, this article demonstrates that the image is more than a generic portrait (“hard motif ”), but rather represents “feminine overseeing from above” (“soft motif ”). This synthetic motif combines three different earlier motifs – the frontal-pose hostess enjoying entertainment, the elevated spectator, and the Queen Mother of the West. By creatively fusing the three motifs into one unity, the Jiaxiang artists lent to the frontal-pose lady a unique power: she not only dominated the center of the composition, but also, like a divine being, commanded a unified view of the surroundings on the lofty building, hence echoing the political reality of the empress mother’s “overseeing the court” in the second century during Eastern Han dynasty
    corecore