156 research outputs found

    FPGA-Based Low-Power Speech Recognition with Recurrent Neural Networks

    Full text link
    In this paper, a neural network based real-time speech recognition (SR) system is developed using an FPGA for very low-power operation. The implemented system employs two recurrent neural networks (RNNs); one is a speech-to-character RNN for acoustic modeling (AM) and the other is for character-level language modeling (LM). The system also employs a statistical word-level LM to improve the recognition accuracy. The results of the AM, the character-level LM, and the word-level LM are combined using a fairly simple N-best search algorithm instead of the hidden Markov model (HMM) based network. The RNNs are implemented using massively parallel processing elements (PEs) for low latency and high throughput. The weights are quantized to 6 bits to store all of them in the on-chip memory of an FPGA. The proposed algorithm is implemented on a Xilinx XC7Z045, and the system can operate much faster than real-time.Comment: Accepted to SiPS 201

    Rotary Compressor Noise Analysis Using Mechanisms and Electromagnetics Coupled Approach

    Get PDF
    This research is conducted to investigate noise source and design low noise compressors. For improving energy efficiency, the rotary compressor with variable speed brushless DC motor is increasingly adopted for appliances. However brushless DC motor makes more compressor vibration than constant speed motor compressor at high speed operating condition. Therefore it is necessary to reduce noise and vibration for improving air conditioner quality. In this study, compressor’s noise and vibration are simulated using structural and electromagnetics coupled methods. To simulate the actual motor movements, precession motion of rotor is applied for simulatio

    Generation of a Wide-Band Response Using Early-Time and Middle-Frequency Data Throught the Use of Orthogonal Fuctions

    Get PDF
    Abstract|Generation of a wide-band response using partial information from the time domain (TD) data and frequency domain (FD) data has been accomplished in this paper through the use of three different orthogonal functions, such as the continuous Laguerre functions, the Bessel-Chebyshev functions, and the associate Hermite functions. In this hybrid approach, one can generate the early-time response using the method of marching-on-in-time (MOT) and use the method of moment (MOM) to generate the middle-frequency response, as the low-frequency data may be unstable. Since the early-time and the middle-frequency data are mutually complimentary, they can provide the missing low- and high-frequency response and the late- time response, respectively. Even though obtaining middle-frequency response from an object needs more computation time than the low- frequency response, this approach has better performance for the interpolation and extrapolation of a wide-band response

    Self-assembled nanocomplex between polymerized phenylboronic acid and doxorubicin for efficient tumor-targeted chemotherapy

    Get PDF
    Since the discovery that nano-scaled particulates can easily be incorporated into tumors via the enhanced permeability and retention (EPR) effect, such nanostructures have been exploited as therapeutic small molecule delivery systems. However, the convoluted synthetic process of conventional nanostructures has impeded their feasibility and reproducibility in clinical applications. Herein, we report an easily prepared formulation of self-assembled nanostructures for systemic delivery of the anti-cancer drug doxorubicin (DOX). Phenylboronic acid (PBA) was grafted onto the polymeric backbone of poly(maleic anhydride). pPBA-DOX nanocomplexes were prepared by simple mixing, on the basis of the strong interaction between the 1,3-diol of DOX and the PBA moiety on pPBA. Three nanocomplexes (1, 2, 4) were designed on the basis of [PBA]:[DOX] molar ratios of 1: 1, 2: 1, and 4: 1, respectively, to investigate the function of the residual PBA moiety as a targeting ligand. An acid-labile drug release profile was observed, owing to the intrinsic properties of the phenylboronic ester. Moreover, the tumor-targeting ability of the nanocomplexes was demonstrated, both in vitro by confocal microscopy and in vivo by fluorescence imaging, to be driven by an inherent property of the residual PBA. Ligand competition assays with free PBA pre-treatment demonstrated the targeting effect of the residual PBA from the nanocomplexes 2 and 4. Finally, the nanocomplexes 2 and 4, compared with the free DOX, exhibited significantly greater anti-cancer effects in vitro and even in vivo. Our pPBA-DOX nanocomplex enables a new paradigm for self-assembled nanostructures with potential biomedical applications.115Ysciescopu
    corecore