130 research outputs found

    Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy

    Full text link
    This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their information receptions, and letting the other receivers work in the half-duplex mode just receiving their desired signals. The objective of this paper is to choose properly the fraction of FD receivers for achieving the optimal network security performance. Both accurate expressions and tractable approximations for the connection outage probability and the secrecy outage probability of an arbitrary legitimate link are derived, based on which the area secure link number, network-wide secrecy throughput and network-wide secrecy energy efficiency are optimized respectively. Various insights into the optimal fraction are further developed and its closed-form expressions are also derived under perfect self-interference cancellation or in a dense network. It is concluded that the fraction of FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the proposed strategy can significantly enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE Transactions on Wireless Communications, 201

    Features-Based Deisotoping Method for Tandem Mass Spectra

    Get PDF
    For high-resolution tandem mass spectra, the determination of monoisotopic masses of fragment ions plays a key role in the subsequent peptide and protein identification. In this paper, we present a new algorithm for deisotoping the bottom-up spectra. Isotopic-cluster graphs are constructed to describe the relationship between all possible isotopic clusters. Based on the relationship in isotopic-cluster graphs, each possible isotopic cluster is assessed with a score function, which is built by combining nonintensity and intensity features of fragment ions. The non-intensity features are used to prevent fragment ions with low intensity from being removed. Dynamic programming is adopted to find the highest score path with the most reliable isotopic clusters. The experimental results have shown that the average Mascot scores and F-scores of identified peptides from spectra processed by our deisotoping method are greater than those by YADA and MS-Deconv software

    Recent advances in non-optical microfluidic platforms for bioparticle detection

    Get PDF
    The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.</p

    Design, Synthesis, and Pharmacological Evaluation of Haloperidol Derivatives as Novel Potent Calcium Channel Blockers with Vasodilator Activity

    Get PDF
    Several haloperidol derivatives with a piperidine scaffold that was decorated at the nitrogen atom with different alkyl, benzyl, or substituted benzyl moieties were synthesized at our laboratory to establish a library of compounds with vasodilator activity. Compounds were screened for vasodilatory activity on isolated thoracic aorta rings from rats, and their quantitative structure–activity relationships (QSAR) were examined. Based on the result of QSAR, N-4-tert-butyl benzyl haloperidol chloride (16c) was synthesized and showed the most potent vasodilatory activity of all designed compounds. 16c dose-dependently inhibited the contraction caused by the influx of extracellular Ca2+ in isolated thoracic aorta rings from rats. It concentration-dependently attenuated the calcium channel current and extracellular Ca2+ influx, without affecting the intracellular Ca2+ mobilization, in vascular smooth muscle cells from rats. 16c, possessing the N-4-tert-butyl benzyl piperidine structure, as a novel calcium antagonist, may be effective as a calcium channel blocker in cardiovascular disease

    Picroside I inhibits asthma phenotypes by regulating Tbet/ GATA-3 ratio and Th1/Th2 balance in a murine model of asthma

    Get PDF
    Purpose: To examine the anti-asthmatic activity of picroside I in murine asthma model, and to elucidate the mechanism(s) involved.Methods: The study involved systematic sensitization of acclimatized BALB/c mice with ovalbumin (OVA), and subsequent exposure to aerosol allergens. The effect of picroside I on associated IgE formation was determined. All assays were performed using standard protocols. Protein expression was assessed using western blotting.Results: Picroside I inhibited allergic airway inflammation, AHR, and the production of OVA-associated IgE and Th2 cytokines. Moreover, it altered the T-bet/GATA3 ratio by suppressing the phosphorylation of STAT6 in a dose-dependent manner.Conclusion: These results indicate that the anti-asthmatic effect of picroside I occurs via a mechanism involving inhibition of Th2 cytokines by suppression of the expressions of pSTAT6 and GATA-3, and upregulation of the expression of T-bet. Thus, picroside I is a promising agent for the management of asthma.Keywords: Picroside, Asthma, Allergic response, IgE, GATA-3, pSTAT
    corecore