238 research outputs found

    CD-CNN: A Partially Supervised Cross-Domain Deep Learning Model for Urban Resident Recognition

    Full text link
    Driven by the wave of urbanization in recent decades, the research topic about migrant behavior analysis draws great attention from both academia and the government. Nevertheless, subject to the cost of data collection and the lack of modeling methods, most of existing studies use only questionnaire surveys with sparse samples and non-individual level statistical data to achieve coarse-grained studies of migrant behaviors. In this paper, a partially supervised cross-domain deep learning model named CD-CNN is proposed for migrant/native recognition using mobile phone signaling data as behavioral features and questionnaire survey data as incomplete labels. Specifically, CD-CNN features in decomposing the mobile data into location domain and communication domain, and adopts a joint learning framework that combines two convolutional neural networks with a feature balancing scheme. Moreover, CD-CNN employs a three-step algorithm for training, in which the co-training step is of great value to partially supervised cross-domain learning. Comparative experiments on the city Wuxi demonstrate the high predictive power of CD-CNN. Two interesting applications further highlight the ability of CD-CNN for in-depth migrant behavioral analysis.Comment: 8 pages, 5 figures, conferenc

    Full Bayesian Significance Testing for Neural Networks

    Full text link
    Significance testing aims to determine whether a proposition about the population distribution is the truth or not given observations. However, traditional significance testing often needs to derive the distribution of the testing statistic, failing to deal with complex nonlinear relationships. In this paper, we propose to conduct Full Bayesian Significance Testing for neural networks, called \textit{n}FBST, to overcome the limitation in relationship characterization of traditional approaches. A Bayesian neural network is utilized to fit the nonlinear and multi-dimensional relationships with small errors and avoid hard theoretical derivation by computing the evidence value. Besides, \textit{n}FBST can test not only global significance but also local and instance-wise significance, which previous testing methods don't focus on. Moreover, \textit{n}FBST is a general framework that can be extended based on the measures selected, such as Grad-\textit{n}FBST, LRP-\textit{n}FBST, DeepLIFT-\textit{n}FBST, LIME-\textit{n}FBST. A range of experiments on both simulated and real data are conducted to show the advantages of our method.Comment: Published as a conference paper at AAAI 202

    TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression

    Full text link
    The main challenge that sets transfer learning apart from traditional supervised learning is the distribution shift, reflected as the shift between the source and target models and that between the marginal covariate distributions. In this work, we tackle model shifts in the presence of covariate shifts in the high-dimensional regression setting. Specifically, we propose a two-step method with a novel fused-regularizer that effectively leverages samples from source tasks to improve the learning performance on a target task with limited samples. Nonasymptotic bound is provided for the estimation error of the target model, showing the robustness of the proposed method to covariate shifts. We further establish conditions under which the estimator is minimax-optimal. Additionally, we extend the method to a distributed setting, allowing for a pretraining-finetuning strategy, requiring just one round of communication while retaining the estimation rate of the centralized version. Numerical tests validate our theory, highlighting the method's robustness to covariate shifts.Comment: Accepted by the 27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024

    Self-Supervised Deconfounding Against Spatio-Temporal Shifts: Theory and Modeling

    Full text link
    As an important application of spatio-temporal (ST) data, ST traffic forecasting plays a crucial role in improving urban travel efficiency and promoting sustainable development. In practice, the dynamics of traffic data frequently undergo distributional shifts attributed to external factors such as time evolution and spatial differences. This entails forecasting models to handle the out-of-distribution (OOD) issue where test data is distributed differently from training data. In this work, we first formalize the problem by constructing a causal graph of past traffic data, future traffic data, and external ST contexts. We reveal that the failure of prior arts in OOD traffic data is due to ST contexts acting as a confounder, i.e., the common cause for past data and future ones. Then, we propose a theoretical solution named Disentangled Contextual Adjustment (DCA) from a causal lens. It differentiates invariant causal correlations against variant spurious ones and deconfounds the effect of ST contexts. On top of that, we devise a Spatio-Temporal sElf-superVised dEconfounding (STEVE) framework. It first encodes traffic data into two disentangled representations for associating invariant and variant ST contexts. Then, we use representative ST contexts from three conceptually different perspectives (i.e., temporal, spatial, and semantic) as self-supervised signals to inject context information into both representations. In this way, we improve the generalization ability of the learned context-oriented representations to OOD ST traffic forecasting. Comprehensive experiments on four large-scale benchmark datasets demonstrate that our STEVE consistently outperforms the state-of-the-art baselines across various ST OOD scenarios.Comment: 14 pages, 9 figure

    Distance measurements via the morphogen gradient of Bicoid in Drosophila embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patterning along the anterior-posterior (A-P) axis in <it>Drosophila </it>embryos is instructed by the morphogen gradient of Bicoid (Bcd). Despite extensive studies of this morphogen, how embryo geometry may affect gradient formation and target responses has not been investigated experimentally.</p> <p>Results</p> <p>In this report, we systematically compare the Bcd gradient profiles and its target expression patterns on the dorsal and ventral sides of the embryo. Our results support a hypothesis that proper distance measurement and the encoded positional information of the Bcd gradient are along the perimeter of the embryo. Our results also reveal that the dorsal and ventral sides of the embryo have a fundamentally similar relationship between Bcd and its target Hunchback (Hb), suggesting that Hb expression properties on the two sides of the embryo can be directly traced to Bcd gradient properties. Our 3-D simulation studies show that a curvature difference between the two sides of an embryo is sufficient to generate Bcd gradient properties that are consistent with experimental observations.</p> <p>Conclusions</p> <p>The findings described in this report provide a first quantitative, experimental evaluation of embryo geometry on Bcd gradient formation and target responses. They demonstrate that the physical features of an embryo, such as its shape, are integral to how pattern is formed.</p

    Validating Multimedia Content Moderation Software via Semantic Fusion

    Full text link
    The exponential growth of social media platforms, such as Facebook and TikTok, has revolutionized communication and content publication in human society. Users on these platforms can publish multimedia content that delivers information via the combination of text, audio, images, and video. Meanwhile, the multimedia content release facility has been increasingly exploited to propagate toxic content, such as hate speech, malicious advertisements, and pornography. To this end, content moderation software has been widely deployed on these platforms to detect and blocks toxic content. However, due to the complexity of content moderation models and the difficulty of understanding information across multiple modalities, existing content moderation software can fail to detect toxic content, which often leads to extremely negative impacts. We introduce Semantic Fusion, a general, effective methodology for validating multimedia content moderation software. Our key idea is to fuse two or more existing single-modal inputs (e.g., a textual sentence and an image) into a new input that combines the semantics of its ancestors in a novel manner and has toxic nature by construction. This fused input is then used for validating multimedia content moderation software. We realized Semantic Fusion as DUO, a practical content moderation software testing tool. In our evaluation, we employ DUO to test five commercial content moderation software and two state-of-the-art models against three kinds of toxic content. The results show that DUO achieves up to 100% error finding rate (EFR) when testing moderation software. In addition, we leverage the test cases generated by DUO to retrain the two models we explored, which largely improves model robustness while maintaining the accuracy on the original test set.Comment: Accepted by ISSTA 202

    The Model 2.0 and Friends: An Interim Report

    Get PDF
    Last year, I reported on preliminary results of an anatomically-inspired deep learning model of the visual system and its role in explaining the face inversion effect. This year, I will report on new results and some variations on network architectures that we have explored, mainly as a way to generate discussion and get feedback. This is by no means a polished, final presentation! We look forward to the group’s suggestions for these projects

    Amino acid Formula induces Microbiota Dysbiosis and Depressive-Like Behavior in Mice

    Get PDF
    Amino acid formula (AAF) is increasingly consumed in infants with cow\u27s milk protein allergy; however, the long-term influences on health are less described. In this study, we established a mouse model by subjecting neonatal mice to an amino acid diet (AAD) to mimic the feeding regimen of infants on AAF. Surprisingly, AAD-fed mice exhibited dysbiotic microbiota and increased neuronal activity in both the intestine and brain, as well as gastrointestinal peristalsis disorders and depressive-like behavior. Furthermore, fecal microbiota transplantation from AAD-fed mice or AAF-fed infants to recipient mice led to elevated neuronal activations and exacerbated depressive-like behaviors compared to that from normal chow-fed mice or cow\u27s-milk-formula-fed infants, respectively. Our findings highlight the necessity to avoid the excessive use of AAF, which may influence the neuronal development and mental health of children
    • …
    corecore