931 research outputs found

    The Politics of Public Goods Provision in Rural China

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC

    Terrestrial-derived soil protein in coastal water: Metal sequestration mechanism and ecological function

    Get PDF
    Abstract(#br)Terrestrial fungi, especially arbuscular mycorrhizal (AM) fungi, enhance heavy metal sequestration and promote ecosystem restoration. However, their ecological functions were historically overlooked in discussions regarding water quality. As an AM fungi-derived stable soil protein fraction, glomalin-related soil protein (GRSP) may provide insights into the ecological functions of AM fungi associated with water quality in coastal ecosystems. Here, we first assessed the metal-loading dynamics and ecological functions of GRSP transported into aquatic ecosystems, characterized the composition characteristics, and revealed the mechanisms underlying Cu and Cd sequestration. Combining in situ sampling and in vitro cultures, we found that the composition characteristics of GRSP were significantly affected by the element and mineral composition of sediments. In situ , GRSP-bound Cu and Cd contributed 18.91–22.03% of the total Cu and 2.27–6.37% of the total Cd. Functional group ligands and ion exchange were the principal mechanisms of Cu binding by GRSP, while Cd binding was dominated by functional group ligands. During the in vitro experiment, GRSP sequestered large amounts of Cu and Cd and formed stable complexes, while further dialysis only released 25.74 ± 3.85% and 33.53 ± 3.62% of GRSP-bound Cu and Cd, respectively

    Terrestrial-derived soil protein in coastal water: metal sequestration mechanism and ecological function.

    Get PDF
    Terrestrial fungi, especially arbuscular mycorrhizal (AM) fungi, enhance heavy metal sequestration and promote ecosystem restoration. However, their ecological functions were historically overlooked in discussions regarding water quality. As an AM fungi-derived stable soil protein fraction, glomalin-related soil protein (GRSP) may provide insights into the ecological functions of AM fungi associated with water quality in coastal ecosystems. Here, we first assessed the metal-loading dynamics and ecological functions of GRSP transported into aquatic ecosystems, characterized the composition characteristics, and revealed the mechanisms underlying Cu and Cd sequestration. Combining in situ sampling and in vitro cultures, we found that the composition characteristics of GRSP were significantly affected by the element and mineral composition of sediments. In situ, GRSP-bound Cu and Cd contributed 18.91-22.03% of the total Cu and 2.27-6.37% of the total Cd. Functional group ligands and ion exchange were the principal mechanisms of Cu binding by GRSP, while Cd binding was dominated by functional group ligands. During the in vitro experiment, GRSP sequestered large amounts of Cu and Cd and formed stable complexes, while further dialysis only released 25.74 ± 3.85% and 33.53 ± 3.62% of GRSP-bound Cu and Cd, respectively

    Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties

    Get PDF
    We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large Brunauer–Emment–Teller specific area (33.8 m2 g−1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent

    Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    Get PDF
    Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress.Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury.After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE).Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    corecore