53 research outputs found

    Algorithms for Computational Genetics Epidemiology

    Get PDF
    The most intriguing problems in genetics epidemiology are to predict genetic disease susceptibility and to associate single nucleotide polymorphisms (SNPs) with diseases. In such these studies, it is necessary to resolve the ambiguities in genetic data. The primary obstacle for ambiguity resolution is that the physical methods for separating two haplotypes from an individual genotype (phasing) are too expensive. Although computational haplotype inference is a well-explored problem, high error rates continue to deteriorate association accuracy. Secondly, it is essential to use a small subset of informative SNPs (tag SNPs) accurately representing the rest of the SNPs (tagging). Tagging can achieve budget savings by genotyping only a limited number of SNPs and computationally inferring all other SNPs. Recent successes in high throughput genotyping technologies drastically increase the length of available SNP sequences. This elevates importance of informative SNP selection for compaction of huge genetic data in order to make feasible fine genotype analysis. Finally, even if complete and accurate data is available, it is unclear if common statistical methods can determine the susceptibility of complex diseases. The dissertation explores above computational problems with a variety of methods, including linear algebra, graph theory, linear programming, and greedy methods. The contributions include (1)significant speed-up of popular phasing tools without compromising their quality, (2)stat-of-the-art tagging tools applied to disease association, and (3)graph-based method for disease tagging and predicting disease susceptibility

    Activation of hedgehog signaling is not a frequent event in ovarian cancers

    Get PDF
    The hedgehog (Hh) signaling pathway regulates many processes of development and tissue homeostasis. Activation of hedgehog signaling has been reported in about 30% of human cancer including ovarian cancer. Inhibition of hedgehog signaling has been pursued as an effective strategy for cancer treatment including an ongoing phase II clinical trial in ovarian cancer. However, the rate of hedgehog signaling activation in ovarian cancer was reported differently by different groups. To predict the successful for future clinical trials of hedgehog signaling inhibitors in ovarian cancer, we assessed hedgehog pathway activation in 34 ovarian epithelial tumor specimens through analyses of target gene expression by in-situ hybridization, immunohistochemistry, RT-PCR and real-time PCR. In contrast to previous reports, we only detected a small proportion of ovarian cancers with hedgehog target gene expression, suggesting that identification of the tumors with activated hedgehog signaling activation will facilitate chemotherapy with hedgehog signaling inhibitors

    Genetic Evidence for XPC-KRAS Interactions During Lung Cancer Development.

    Get PDF
    Lung cancer causes more deaths than breast, colorectal and prostate cancers combined. Despite major advances in targeted therapy in a subset of lung adenocarcinomas, the overall 5-year survival rate for lung cancer worldwide has not significantly changed for the last few decades. DNA repair deficiency is known to contribute to lung cancer development. In fact, human polymorphisms in DNA repair genes such as xeroderma pigmentosum group C (XPC) are highly associated with lung cancer incidence. However, the direct genetic evidence for the role of XPC for lung cancer development is still lacking. Mutations of the Kirsten rat sarcoma viral oncogene homolog (Kras) or its downstream effector genes occur in almost all lung cancer cells, and there are a number of mouse models for lung cancer using these mutations. Using activated Kras, KrasLA1, as a driver for lung cancer development in mice, we showed for the first time that mice with KrasLA1 and Xpc knockout had worst outcomes in lung cancer development, and this phenotype was associated with accumulated DNA damage. Using cultured cells, we demonstrated that induced expression of oncogenic KRASG12V led to increased levels of reactive oxygen species (ROS) as well as DNA damage, and both can be suppressed by anti-oxidants. Thus, it appears that XPC may help repair DNA damage caused by KRAS-mediated production of ROS

    Activation of the hedgehog pathway in advanced prostate cancer

    Get PDF
    BACKGROUND: The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. RESULTS: Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP), are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu) protein, a negative regulator of the hedgehog pathway. We find that Su(Fu) protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu). Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27). High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3). We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. CONCLUSION: Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu) or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have significant implications of prostate cancer therapeutics

    Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms.

    Get PDF
    OBJECTIVE: This study sought to characterize the inflammatory infiltrate in ascending thoracic aortic aneurysm in patients with Marfan syndrome, familial thoracic aortic aneurysm, or nonfamilial thoracic aortic aneurysm. BACKGROUND: Thoracic aortic aneurysms are associated with a pathologic lesion termed medial degeneration, which is described as a noninflammatory lesion. Thoracic aortic aneurysms are a complication of Marfan syndrome and can be inherited in an autosomal dominant manner of familial thoracic aortic aneurysm. METHODS: Full aortic segments were collected from patients undergoing elective repair with Marfan syndrome (n = 5), familial thoracic aortic aneurysm (n = 6), and thoracic aortic aneurysms (n = 9), along with control aortas (n = 5). Immunohistochemistry staining was performed using antibodies directed against markers of lymphocytes and macrophages. Real-time polymerase chain reaction analysis was performed to quantify the expression level of the T-cell receptor beta-chain variable region gene. RESULTS: Immunohistochemistry of thoracic aortic aneurysm aortas demonstrated that the media and adventitia from Marfan syndrome, familial thoracic aortic aneurysm, and sporadic cases had increased numbers of T lymphocytes and macrophages when compared with control aortas. The number of T cells and macrophages in the aortic media of the aneurysm correlated inversely with the patient\u27s age at the time of prophylactic surgical repair of the aorta. T-cell receptor profiling indicated a similar clonal nature of the T cells in the aortic wall in a majority of aneurysms, whether the patient had Marfan syndrome, familial thoracic aortic aneurysm, or sporadic disease. CONCLUSION: These results indicate that the infiltration of inflammatory cells contributes to the pathogenesis of thoracic aortic aneurysms. Superantigen-driven stimulation of T lymphocytes in the aortic tissues of patients with thoracic aortic aneurysms may contribute to the initial immune response

    Oncogenic Function of DACT1 in Colon Cancer through the Regulation of Ξ²-catenin

    Get PDF
    The Wnt/Ξ²-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/Ξ²-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of Ξ²-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of Ξ²-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated Ξ²-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3Ξ² and Ξ²-catenin. DACT1 stabilizes Ξ²-catenin via DACT1-induced effects on GSK-3Ξ² and directly interacts with Ξ²-catenin proteins. The level of phosphorylated GSK-3Ξ² at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of Ξ²-catenin via increasing the level of phosphorylated GSK-3Ξ² at Ser9 to inhibit the activity of GSK-3Ξ². Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the Ξ²-catenin-dependent pathway

    The role of yarn structure on the hand related low-stress mechanical behavior of enzyme treated yarns by Jingwu He.

    No full text
    M.S.Rahdhakrishnaiah Parachur
    • …
    corecore