107 research outputs found

    Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Get PDF
    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src

    Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network

    No full text
    Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy

    Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network

    No full text
    Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy

    Satellite Based Mapping of Ground PM2.5 Concentration Using Generalized Additive Modeling

    No full text
    Satellite-based PM2.5 concentration estimation is growing as a popular solution to map the PM2.5 spatial distribution due to the insufficiency of ground-based monitoring stations. However, those applications usually suffer from the simple hypothesis that the influencing factors are linearly correlated with PM2.5 concentrations, though non-linear mechanisms indeed exist in their interactions. Taking the Beijing-Tianjin-Hebei (BTH) region in China as a case, this study developed a generalized additive modeling (GAM) method for satellite-based PM2.5 concentration mapping. In this process, the linear and non-linear relationships between PM2.5 variation and associated contributing factors, such as the aerosol optical depth (AOD), industrial sources, land use type, road network, and meteorological variables, were comprehensively considered. The reliability of the GAM models was validated by comparison with typical linear land use regression (LUR) models. Results show that GAM modeling outperforms LUR modeling at both the annual and seasonal scale, with obvious higher model fitting-based adjusted R2 and lower RMSEs. This is confirmed by the cross-validation-based adjusted R2 with values of GAM-based spring, summer, autumn, winter, and annual models, which are 0.92, 0.78, 0.87, 0.85, and 0.90, respectively, while those of LUR models are 0.87, 0.71, 0.84, 0.84, and 0.85, respectively. Different to the LUR-based hypothesis of the “straight line” relations, the “smoothed curves” from GAM-based apportionment analysis reveals that factors contributing to PM2.5 variation are unstable with the alternate linear and non-linear relations. The GAM model-based PM2.5 concentration surfaces clearly demonstrate their superiority in disclosing the heterogeneous PM2.5 concentrations to the discrete observations. It can be concluded that satellite-based PM2.5 concentration mapping could be greatly improved by GAM modeling given its simultaneous considerations of the linear and non-linear influencing mechanisms of PM2.5
    • …
    corecore