195 research outputs found

    Quantum phases of the biased two-chain-coupled Bose-Hubbard Ladder

    Full text link
    We investigate the quantum phases of bosons in a two-chain-coupled ladder. This bosonic ladder is generally in a biased configuration, meaning that the two chains of the ladder can have dramatically different on-site interactions and potential energies. Adopting the numerical density-matrix renormalization-group method, we analyze the phase transitions in various parameter spaces. We find signatures of both insulating-to-superfluid and superfluid-to-insulating quantum phase transitions as the interchain tunnelling is increased. Interestingly, tunning the interaction to some intermediate values, the system can exhibit a reentrant quantum phase transition between insulating and superfluid phases. We show that for infinite interaction bias, the model is amenable to some analytical treatments, whose prediction about the phase boundary is in great agreement with the numerical results. We finally clarify some critical parameters which separate the system into regimes with distinct phase behaviours, and briefly compare typical properties of the biased and unbiased bosonic ladder systems. Our work enriches the Bose-Hubbard physics.Comment: 10 pages, 7 figure

    SelfNeRF: Fast Training NeRF for Human from Monocular Self-rotating Video

    Full text link
    In this paper, we propose SelfNeRF, an efficient neural radiance field based novel view synthesis method for human performance. Given monocular self-rotating videos of human performers, SelfNeRF can train from scratch and achieve high-fidelity results in about twenty minutes. Some recent works have utilized the neural radiance field for dynamic human reconstruction. However, most of these methods need multi-view inputs and require hours of training, making it still difficult for practical use. To address this challenging problem, we introduce a surface-relative representation based on multi-resolution hash encoding that can greatly improve the training speed and aggregate inter-frame information. Extensive experimental results on several different datasets demonstrate the effectiveness and efficiency of SelfNeRF to challenging monocular videos.Comment: Project page: https://ustc3dv.github.io/SelfNeR

    Data Comics for Reporting Controlled User Studies in Human-Computer Interaction

    Get PDF

    Towards Generative Modeling of Urban Flow through Knowledge-enhanced Denoising Diffusion

    Full text link
    Although generative AI has been successful in many areas, its ability to model geospatial data is still underexplored. Urban flow, a typical kind of geospatial data, is critical for a wide range of urban applications. Existing studies mostly focus on predictive modeling of urban flow that predicts the future flow based on historical flow data, which may be unavailable in data-sparse areas or newly planned regions. Some other studies aim to predict OD flow among regions but they fail to model dynamic changes of urban flow over time. In this work, we study a new problem of urban flow generation that generates dynamic urban flow for regions without historical flow data. To capture the effect of multiple factors on urban flow, such as region features and urban environment, we employ diffusion model to generate urban flow for regions under different conditions. We first construct an urban knowledge graph (UKG) to model the urban environment and relationships between regions, based on which we design a knowledge-enhanced spatio-temporal diffusion model (KSTDiff) to generate urban flow for each region. Specifically, to accurately generate urban flow for regions with different flow volumes, we design a novel diffusion process guided by a volume estimator, which is learnable and customized for each region. Moreover, we propose a knowledge-enhanced denoising network to capture the spatio-temporal dependencies of urban flow as well as the impact of urban environment in the denoising process. Extensive experiments on four real-world datasets validate the superiority of our model over state-of-the-art baselines in urban flow generation. Further in-depth studies demonstrate the utility of generated urban flow data and the ability of our model for long-term flow generation and urban flow prediction. Our code is released at: https://github.com/tsinghua-fib-lab/KSTDiff-Urban-flow-generation

    IntrinsicNGP: Intrinsic Coordinate based Hash Encoding for Human NeRF

    Full text link
    Recently, many works have been proposed to utilize the neural radiance field for novel view synthesis of human performers. However, most of these methods require hours of training, making them difficult for practical use. To address this challenging problem, we propose IntrinsicNGP, which can train from scratch and achieve high-fidelity results in few minutes with videos of a human performer. To achieve this target, we introduce a continuous and optimizable intrinsic coordinate rather than the original explicit Euclidean coordinate in the hash encoding module of instant-NGP. With this novel intrinsic coordinate, IntrinsicNGP can aggregate inter-frame information for dynamic objects with the help of proxy geometry shapes. Moreover, the results trained with the given rough geometry shapes can be further refined with an optimizable offset field based on the intrinsic coordinate.Extensive experimental results on several datasets demonstrate the effectiveness and efficiency of IntrinsicNGP. We also illustrate our approach's ability to edit the shape of reconstructed subjects.Comment: Project page:https://ustc3dv.github.io/IntrinsicNGP/. arXiv admin note: substantial text overlap with arXiv:2210.0165
    • …
    corecore