39 research outputs found

    Reliable Fix Patterns Inferred from Static Checkers for Automated Program Repair

    Get PDF
    Fix pattern-based patch generation is a promising direction in automated program repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this article, we propose investigating the possibility in an APR scenario of leveraging fix patterns inferred from code changes that address violations detected by static analysis tools. To that end, we build a fix pattern-based APR tool, Avatar, which exploits fix patterns of static analysis violations as ingredients for the patch generation of repairing semantic bugs. Evaluated on four benchmarks (i.e., Defects4J, Bugs.jar, BEARS, and QuixBugs), Avatar presents the potential feasibility of fixing semantic bugs with the fix patterns inferred from the patches for fixing static analysis violations and can correctly fix 26 semantic bugs when Avatar is implemented with the normal program repair pipeline. We also find that Avatar achieves performance metrics that are comparable to that of the closely related approaches in the literature. Compared with CoCoNut, Avatar can fix 18 new bugs in Defects4J and 3 new bugs in QuixBugs. When compared with HDRepair, JAID, and SketchFix, Avatar can newly fix 14 Defects4J bugs. In terms of the number of correctly fixed bugs, Avatar is also comparable to the program repair tools with the normal fault localization setting and presents better performance than most program repair tools. These results imply that Avatar is complementary to current program repair approaches. We further uncover that Avatar can present different bug-fixing performances when it is configured with different fault localization tools, and the stack trace information from the failed executions of test cases can be exploited to improve the bug-fixing performance of Avatar by fixing more bugs with fewer generated patch candidates. Overall, our study highlights the relevance of static bug-finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases (i.e., dynamic information)

    Study on the influence of scaffold morphology and structure on osteogenic performance

    Get PDF
    The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed

    Performance Investigation on Different Designs of Superhydrophobic Surface Texture for Composite Insulator

    No full text
    To investigate the superhydrophobic properties of different surface textures, nine designs of textures with micro-nanostructures were produced successfully using the laser engraving technique on the surfaces of composite insulator umbrella skirt samples made of silicon rubber. The optimal parameters of the texture designs to give rise to the best hydrophobicity were determined. The surface morphology, abrasion resistance, corrosion resistance, self-cleaning and antifouling property of the different textured surfaces as well as water droplets rolling on the textured surfaces were studied experimentally using a contact angle meter, scanning electron microscope, three-dimensional topography meter and high-speed camera system. It was found that the diamond column design with optimal parameters has the best superhydrophobicity and overall performance. The most remarkable advantage of the optimal diamond column design is its robustness and long-term superhydrophobicity after repeated de-icing in harsh conditions. The reported work is an important step towards achieving superhydrophobic surface without coating for outdoor composite insulator in practical applications

    Performance investigation on different designs of superhydrophobic surface texture for composite insulator

    No full text
    To investigate the superhydrophobic properties of different surface textures, nine designs of textures with micro-nanostructures were produced successfully using the laser engraving technique on the surfaces of composite insulator umbrella skirt samples made of silicon rubber. The optimal parameters of the texture designs to give rise to the best hydrophobicity were determined. The surface morphology, abrasion resistance, corrosion resistance, self-cleaning and antifouling property of the different textured surfaces as well as water droplets rolling on the textured surfaces were studied experimentally using a contact angle meter, scanning electron microscope, three-dimensional topography meter and high-speed camera system. It was found that the diamond column design with optimal parameters has the best superhydrophobicity and overall performance. The most remarkable advantage of the optimal diamond column design is its robustness and long-term superhydrophobicity after repeated de-icing in harsh conditions. The reported work is an important step towards achieving superhydrophobic surface without coating for outdoor composite insulator in practical applications.</p
    corecore