53 research outputs found
Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude
Characterization of the state of polarization (SOP) of ultrafast laser emission is relevant in several application fields such as field manipulation, pulse shaping, testing of sample characteristics, and biomedical imaging. Nevertheless, since high-speed detection and wavelength-resolved measurements cannot be simultaneously achieved by commercial polarization analyzers, single-shot measurements of the wavelength-resolved SOP of ultrafast laser pulses have rarely been reported. Here, we propose a method for single-shot, wavelength-resolved SOP measurements that exploits the method of division-of-amplitude under far-field transformation. A large accumulated chromatic dispersion is utilized to time-stretch the laser pulses via dispersive Fourier transform, so that spectral information is mapped into a temporal waveform. By calibrating our test matrix with different wavelengths, wavelength-resolved SOP measurements are achieved, based on the division-of-amplitude approach, combined with high-speed opto-electronic processing. As a proof-of-concept demonstration, we reveal the complex wavelength-dependent SOP dynamics in the build-up of dissipative solitons. The experimental results show that the dissipative soliton exhibits far more complex wavelength-related polarization dynamics, which are not shown in single-shot spectrum measurement. Our method paves the way for single-shot measurement and intelligent control of ultrafast lasers with wavelength-resolved SOP structures, which could promote further investigations of polarization-related optical signal processing techniques, such as pulse shaping and hyperspectral polarization imaging
Interface-engineered ferroelectricity of epitaxial Hf\u3csub\u3e0.5\u3c/sub\u3eZr\u3csub\u3e0.5\u3c/sub\u3eO\u3csub\u3e2\u3c/sub\u3e thin films
Ferroelectric hafnia-based thin films have attracted intense attention due to their compatibility with complementary metal-oxide-semiconductor technology. However, the ferroelectric orthorhombic phase is thermodynamically metastable. Various efforts have been made to stabilize the ferroelectric orthorhombic phase of hafnia-based films such as controlling the growth kinetics and mechanical confinement. Here, we demonstrate a key interface engineering strategy to stabilize and enhance the ferroelectric orthorhombic phase of the Hf0.5Zr0.5O2 thin film by deliberately controlling the termination of the bottom La0.67Sr0.33MnO3 layer. We find that the Hf0.5Zr0.5O2 films on the MnO2-terminated La0.67Sr0.33MnO3 have more ferroelectric orthorhombic phase than those on the LaSrO-terminated La0.67Sr0.33MnO3, while with no wake-up effect. Even though the Hf0.5Zr0.5O2 thickness is as thin as 1.5nm, the clear ferroelectric orthorhombic (111) orientation is observed on the MnO2 termination. Our transmission electron microscopy characterization and theoretical modelling reveal that reconstruction at the Hf0.5Zr0.5O2/ La0.67Sr0.33MnO3 interface and hole doping of the Hf0.5Zr0.5O2 layer resulting from theMnO2 interface termination are responsible for the stabilization of the metastable ferroelectric phase of Hf0.5Zr0.5O2. We anticipate that these results will inspire further studies of interface-engineered hafnia-based systems
Anti-inflammatory recombinant TSG-6 stabilizes the progression of focal retinal degeneration in a murine model
<p>Abstract</p> <p>Background</p> <p>Inflammatory responses are detected in the retina of patients with age-related macular degeneration and <it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice on rd8 background,(<it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice) a model that develops progressive age-related macular degeneration-like retinal lesions including focal photoreceptor degeneration, abnormal retinal pigment epithelium and A2E accumulation. Tumor necrosis factor-inducible gene 6 protein is an anti-inflammatory protein and has been shown to improve myocardial infarction outcome and chemically injured cornea in mice by suppressing inflammation. In this study, we evaluated the effect of an intravitreous injection of recombinant TSG-6 on the retinal lesions of <it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice.</p> <p>Methods</p> <p>Recombinant TSG-6 (400 ng) was administered by intravitreous injection into the right eye of six-week-old C<it>cl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice. Their left eye was injected with phosphate-buffered saline as a control. Funduscopic pictures were taken before injection and sequentially once a month after injection. The mice were killed two months after injection and the ocular histology examined. Retinal A2E, a major component of lipofuscin, was measured by high performance liquid chromatography. The microarray of ocular mRNA of 92 immunological genes was performed. The genes showing differentiated expression in microarray were further compared between the injected right eye and the contralateral (control) eye by [real-time quantitative reverse transcription polymerase chain reaction] qRT-PCR.</p> <p>Results</p> <p>The continuous monitoring of the fundus for two months showed a slower progression or alleviation of retinal lesions in the treated right eyes as compared with the untreated left eyes. Among 23 pairs of eyes, the lesion levels improved in 78.3%, stayed the same in 8.7% and progressed in 13.0%. Histology confirmed the clinical observation. Even though there was no difference in the level of A2E between the treated and the untreated eyes, microarray analysis of 92 immune genes showed that <it>IL-17a </it>was substantially decreased after the treatment. Expression of <it>TNF-α </it>showed a similar pattern to <it>IL-17a</it>. The results were consistent in duplicated arrays and confirmed by qRT-PCR.</p> <p>Conclusions</p> <p>We concluded that intravitreous administration of recombinant TSG-6 might stabilize retinal lesions in <it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice on rd8 background. Modulation of ocular immunological gene expressions, especially IL-17a, could be one of the mechanisms.</p
Performance evaluation of inpatient service in Beijing: a horizontal comparison with risk adjustment based on Diagnosis Related Groups
<p>Abstract</p> <p>Background</p> <p>The medical performance evaluation, which provides a basis for rational decision-making, is an important part of medical service research. Current progress with health services reform in China is far from satisfactory, without sufficient regulation. To achieve better progress, an effective tool for evaluating medical performance needs to be established. In view of this, this study attempted to develop such a tool appropriate for the Chinese context.</p> <p>Methods</p> <p>Data was collected from the front pages of medical records (FPMR) of all large general public hospitals (21 hospitals) in the third and fourth quarter of 2007. Locally developed Diagnosis Related Groups (DRGs) were introduced as a tool for risk adjustment and performance evaluation indicators were established: Charge Efficiency Index (CEI), Time Efficiency Index (TEI) and inpatient mortality of low-risk group cases (IMLRG), to reflect respectively work efficiency and medical service quality. Using these indicators, the inpatient services' performance was horizontally compared among hospitals. Case-mix Index (CMI) was used to adjust efficiency indices and then produce adjusted CEI (aCEI) and adjusted TEI (aTEI). Poisson distribution analysis was used to test the statistical significance of the IMLRG differences between different hospitals.</p> <p>Results</p> <p>Using the aCEI, aTEI and IMLRG scores for the 21 hospitals, Hospital A and C had relatively good overall performance because their medical charges were lower, LOS shorter and IMLRG smaller. The performance of Hospital P and Q was the worst due to their relatively high charge level, long LOS and high IMLRG. Various performance problems also existed in the other hospitals.</p> <p>Conclusion</p> <p>It is possible to develop an accurate and easy to run performance evaluation system using Case-Mix as the tool for risk adjustment, choosing indicators close to consumers and managers, and utilizing routine report forms as the basic information source. To keep such a system running effectively, it is necessary to improve the reliability of clinical information and the risk-adjustment ability of Case-Mix.</p
Investigating the Influences of Pore-Scale Characteristics on Tight Oil Migration by a Two-Phase Pore Network Model
The migration of expelled hydrocarbon from source rock into unconventional tight reservoirs is subject to different pore-scale fluid transport mechanisms as opposed to the conventional counterparts and therefore plays a crucial role in controlling the hydrocarbon distribution and accumulation in the former. One of the different mechanisms is related to the formation of a more viscous boundary layer (BL) of brine, i.e., wetting phase fluid on pore surfaces, giving rise to the so-called BL effect. In this work, a two-phase pore network model (PNM) that considers this BL effect is developed to study the influences of pore-scale characteristics on the oil migration process, manifested through the BL effect in tight-sandstone media. Good agreements are reached between experimentally derived relative permeability curves and predicted ones, by applying this model to the pore-network networks extracted from the same samples. Then, this validated model was used to evaluate the impacts of the following factors on the oil migration process: pore radius, coordination number, aspect ratio, brine viscosity, and wettability. The results show that all factors can influence the oil migration process but at different magnitudes. The applicability and significance of the developed tight oil migration PNM are discussed in this work
Hub Gene Mining and Co-Expression Network Construction of Low-Temperature Response in Maize of Seedling by WGCNA
Weighted gene co-expression network analysis (WGCNA) is a research method in systematic biology. It is widely used to identify gene modules related to target traits in multi-sample transcriptome data. In order to further explore the molecular mechanism of maize response to low-temperature stress at the seedling stage, B144 (cold stress tolerant) and Q319 (cold stress sensitive) provided by the Maize Research Institute of Heilongjiang Academy of Agricultural Sciences were used as experimental materials, and both inbred lines were treated with 5 °C for 0 h, 12 h, and 24 h, with the untreated material as a control. Eighteen leaf samples were used for transcriptome sequencing, with three biological replicates. Based on the above transcriptome data, co-expression networks of weighted genes associated with low-temperature-tolerance traits were constructed by WGCNA. Twelve gene modules significantly related to low-temperature tolerance at the seedling stage were obtained, and a number of hub genes involved in low-temperature stress regulation pathways were discovered from the four modules with the highest correlation with target traits. These results provide clues for further study on the molecular genetic mechanisms of low-temperature tolerance in maize at the seedling stage
QTL analysis of low-temperature tolerance in maize germination by SLAF-seq and BSA technique
Background: Cold damage of maize during germination is a global problem; it occurs frequently in northeast China, and leads to a large-scale reduction in yield. Low temperature tolerance of maize in germination is a complex quantitative trait controlled by multigenes, and no major QTLs or key genes have been identified. Results: An F2 isolation population with S319 and R144 as parents was constructed. The bulked segregant analysis (BSA) and specific-locus amplified fragment-sequencing (SLAF-seq) methods were applied to locate the chromosomal association regions related to low-temperature tolerance of maize during germination. Sequencing obtained 221.72 Gbp clean data, with an average sequencing depth of 25.96X. Four candidate regions associated with low-temperature tolerance trait of maize in germination were obtained, with a total length of 25.71 Mb and 1513 annotated genes, including 456 nonsynonymous mutant genes and 111 frameshift mutant genes. Conclusions: This study aimed to lay the foundation for the mining of candidate genes of low-temperature tolerance in maize during germination, and accelerate the process of targeted improvement of maize low-temperature tolerance molecular marker-assisted breeding.How to cite: Yu T, Zhang J, Cao J, et al. QTL analysis of low temperature tolerance in maize germination by SLAF-seq and BSA technique. Electron J Biotechnol 2024;70. https://doi.org/10.1016/j.ejbt.2024.04.003
Study on physicochemical, structural, and functional properties of Zhengdan958 and Xianyu335 cornstarch from newly harvested corn under postharvest ripening conditions at ambient temperature
The importance of starch in nutrition and industry is unquestionable. This study investigated the changes in physicochemical, structural, and functional properties of cornstarch from newly harvested Zhengdan958 (Zd958) and Xianyu335 (Xy335) corn during for 0, 20, 40, and 60 d at ambient temperature. The results showed no significant changes in the proximate components and apparent structure of Zd958 and Xy335 cornstarch under postharvest ripening conditions. Compared with 0 d, the molecular weight distribution and mass fraction of Zd958 and Xy335 cornstarch have changed significantly, the relative crystallinity (RC) has significantly increased from 26.4% to 26.5%–28.8% and 28.4%, and R1045/1022 has significantly increased from 0.828 to 0.826 to 0.843 and 0.883, respectively. The changes in structure indicated that the synthesis and rearrangement of cornstarch molecules formed highly ordered crystalline structures, and the ordered structures of long-range and short-range molecules increased. Moreover, the changes in structure affected the pasting characteristics and texture profiles of cornstarch, therefore, affecting the final food quality
- …