81 research outputs found

    Effect of Flammulina velutipes on the physicochemical and sensory characteristics of Cantonese sausages

    Get PDF
    © 2019 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (April 2019) in accordance with the publisher’s archiving policyThe effects of fresh and dried Flammulina velutipes (FFV and DFV) on quality and sensory characteristics of Cantonese sausages were investigated. Sausage samples were prepared by adding 0% (control), 2.5% FFV, 2.5% and 5.0% DFV, respectively, and their nutritional compositions, free amino acid profiles, lipid and protein oxidation, color and texture properties were determined. Addition of F. velutipes significantly decreased fat content while increased free amino acid contents of Cantonese sausages. Total free amino acid contents of 2.5% FFV, 2.5% DFV and 5.0% DFV incorporation were 2.8-, 2.4- and 3.5-fold as compared to control, respectively. Lipid and protein oxidation of Cantonese sausages were effectively inhibited by the addition of F. velutipes. Both FFV and DFV addition decreased hardness and chewiness while showed different effect on yellowness of samples. DFV added at 2.5% exhibited the best overall sensory acceptance. Therefore, appropriate addition of F. velutipes may be an effective way to improve meat product quality and function

    Development and evaluation of a new luciferase immunosorbent assay to detect GII.6 norovirus-specific IgG in different domestic and wild animals

    Get PDF
    Noroviruses (NoVs) are the leading viral pathogens globally causing acute gastroenteritis (AGE) in humans, posing a significant global health threat and economic burden. Recent investigations revealed that human NoVs had been detected in different animals, which raises concerns about whether NoVs are potential zoonotic diseases. This study developed a novel luciferase immunosorbent assay (LISA) to detect GII.6 NoV IgG based on P protein of VP1. The LISA showed high specificity (99.20%) and sensitivity (92.00%) with 4–16 times more sensitivity compared with an ELISA. NoV-LISA was reproducible with human serum regarding the inter- and intra-assay coefficient of variance values. Potential cross-reactivity was also evaluated using mice serum immunized by other antigens, which showed that NoV-LISA could differentiate GII.6 NoV from rotavirus and various genotypes of NoV. Specific GII.6 NoV IgG was widely detected in different domestic and wild animals, including dogs, pigs, bats, rats, and home shrews, with various IgG-positive rates ranging from 2.5 to 74.4%. In conclusion, our newly developed NoV-LISA assay is suitable for NoV-specific IgG detection in humans and animals. The wide distribution of IgG antibodies against human NoV indicates potential zoonotic transmission between humans and animals

    Physiological Roles of ArcA, Crp, and EtrA and Their Interactive Control on Aerobic and Anaerobic Respiration in Shewanella oneidensis

    Get PDF
    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters

    Numerical simulation of XCC pile penetration in undrained clay

    No full text
    This paper presents large deformation analysis of X-section Cast-in place Concrete (XCC) pile (a type of non-cylindrical pile) penetration in undrained clay using the Coupled Eulerian-Lagrangian (CEL) numerical technique. The main objective of this study was to investigate the shape effect of XCC pile cross-section on the penetration mechanism, such as the plastic zone around pile shaft and stress developed in the soil. The discrepancy of the stress mechanism between the circular and XCC piles are captured. The results show that the shape effect has insignificant influence on the plastic zone surrounding penetrated XCC pile. The shape effect only influences of the radial stress distribution around a rough XCC pile, while it can be neglected for smooth interface case. In addition, the radial stress, radial stress gradient and vertical stress around the smooth XCC pile shaft in θ=0° profile is larger than the one in θ= 45° profile. Moreover, the radial stress near the ground surface in θ= 45° profile is nearly equal to zero, while the radial stress near the ground surface in θ=0° profile sharply increases with the increasing of soil depth. The presented analysis provided a basis for developing design method for XCC pile in the future

    Capillary forces modeling in micro/nano interactions

    No full text
    ABSTRACT This paper introduces two numerical approaches to model the capillary forces under two different initial conditions: given volume of the liquid and under the capillary condensation. The paper thoroughly analyzes the solutions of both numerical methods. Due to multiple numerical solutions may exist for a given set of parameters, criteria based on the derivative and the second derivative of the solution are proposed to determine the existence and stability of those numerical solutions. The features of those numerical solutions are also carefully discussed. Moreover, the results of two numerical methods are compared in different system parameters for several configurations, including two plates with different volume of liquid between them, a plate and a cone of different incline angle, and a plate and spheres of different radius. Suggestions of the applicability of both methods are given based on the results. To allow calculation of capillary forces between arbitrary shaped objects, the paper proposes an early approach to calculate the capillary forces for discretized surfaces

    Three-dimensional reconstruction and morphologic characteristics of porous metal fiber sintered sheet

    No full text
    Nature Science Foundation of China [51275177, 51105144, 51105387]; Nature Science Foundation of Guangdong Province [S2012010008626]This paper presents an approach to achieve morphological characterizing for complex porous materials based on micro X-ray tomography images, with an example of a novel porous metal fiber sheet produced through solid-state sintering method. The geometrical reconstruction was performed after selection of volume of interest and image processing of anisotropic diffusion smooth. The reconstructed gray level images were then transferred into binary images by adjusting binarization threshold according to the actual porosity. Taking into account the tubular structural feature of the fibers, skeleton extraction algorithm based on the distance transform function was applied and further improved by the scale axis transform method. The skeleton was later pruned and segmented according to the contact points to perform morphological characterizing. Compared with actual manufacturing parameters, the style, length, radius, orientation and tortuosity of fiber segments were discussed. The results show that our proposed method can well describe the actual geometrical and morphological characteristics, which will provide a promising method for the structural description of fibrous networks. (C) 2013 Elsevier Inc. All rights reserved
    corecore