42 research outputs found

    The influence of tropospheric biennial oscillation on mid-tropospheric CO_2

    Get PDF
    Mid-tropospheric CO_2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO_2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO_2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO_2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO_2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO_2 is to be smaller than that in the AIRS observations

    Influence of Stratospheric Sudden Warming on AIRS Midtropospheric CO_2

    Get PDF
    Midtropospheric CO_2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO_2 in the middle to upper troposphere. To choose the SSW events that had strong coupling between the stratosphere and troposphere, the authors applied a principal component analysis to the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2) geopotential height data at 17 pressure levels. Two events (April 2003 and March 2005) that have strong couplings between the stratosphere and troposphere were chosen to investigate the influence of SSW on AIRS midtropospheric CO_2. The authors investigated the temporal and spatial variations of AIRS midtropospheric CO_2 before and after the SSW events and found that the midtropospheric CO_2 concentrations increased by 2–3 ppm within a few days after the SSW events. These results can be used to better understand how the chemical tracers respond to the large-scale dynamics in the high latitudes

    CO_2 semiannual oscillation in the middle troposphere and at the surface

    Get PDF
    Using in situ measurements, we find a semiannual oscillation (SAO) in the midtropospheric and surface CO_2. Chemistry transport models (2-D Caltech/JPL model, 3-D GEOS-Chem, and 3-D MOZART-2) are used to investigate possible sources for the SAO signal in the midtropospheric and surface CO_2. From model sensitivity studies, it is revealed that the SAO signal in the midtropospheric CO_2 originates mainly from surface CO_2 with a small contribution from transport fields. It is also found that the source for the SAO signal in surface CO_2 is mostly related to the CO_2 exchange between the biosphere and the atmosphere. By comparing model CO_2 with in situ CO_2 measurements at the surface, we find that models are able to capture both annual and semiannual cycles well at the surface. Model simulations of the annual and semiannual cycles of CO_2 in the tropical middle troposphere agree reasonably well with aircraft measurements

    Influence of El Niño on Midtropospheric CO_2 from Atmospheric Infrared Sounder and Model

    Get PDF
    The authors investigate the influence of El Niño on midtropospheric CO_2 from the Atmospheric Infrared Sounder (AIRS) and the Model for Ozone and Related Chemical Tracers, version 2 (MOZART-2). AIRS midtropospheric CO_2 data are used to study the temporal and spatial variability of CO_2 in response to El Niño. CO_2 differences between the central and western Pacific Ocean correlate well with the Southern Oscillation index. To reveal the temporal and spatial variability of the El Niño signal in the AIRS midtropospheric CO_2, a multiple regression method is applied to the CO_2 data from September 2002 to February 2011. There is more (less) midtropospheric CO_2 in the central Pacific and less (more) midtropospheric CO_2 in the western Pacific during El Niño (La Niña) events. Similar results are seen in the MOZART-2 convolved midtropospheric CO_2, although the El Niño signal in the MOZART-2 is weaker than that in the AIRS data

    A Resonant Lorentz-Force Magnetometer Exploiting Blue Sideband Actuation to Enhance Sensitivity and Resolution

    Get PDF
    This paper reports a miniaturized resonant Lorentz-force magnetometer that exploits blue-sideband actuation to attain a better sensitivity and resolution. The resonant magnetometer consists of a double-ended tuning fork (DETF) resonator with cavity slots to optimize thermoelastic dissipation, as well as a Lorentz-force generator structure to transduce the magnetic force to the axial of the resonator. The proposed device demonstrates a Lorentz-force sensitivity of 5.5 mV/nN, a noise floor of 1.25 μV/ √ Hz, and a resolution of 0.23 pN/ √ Hz. In comparison with a conventional drive scheme, the blue- sideband actuation achieves approximately two orders of magnitude improvement regarding sensitivity and resolution than that of the amplitude modulation (AM) readout and 3.6-fold enhancement than that of the frequency modulation (FM) readout. The results affirm the merit of the novel excitation method and provide solid evidence of its effectiveness in practical applications

    The dilemma of antibiotic susceptibility and clinical decision-making in a multi-drug-resistant Pseudomonas aeruginosa bloodstream infection

    Get PDF
    Objective: How to choose the appropriate antibiotics and dosage has always been a difficult issue during the treatment of multi-drug-resistant bacterial infections. Our study aims to resolve this difficulty by introducing our multi-disciplinary treatment (MDT) clinical decision-making scheme based on rigorous interpretation of antibiotic susceptibility tests and precise therapeutic drug monitoring (TDM)-guided dosage adjustment.Method: The treatment course of an elderly patient who developed a multi-drug-resistant Pseudomonas aeruginosa (MDRPA) bloodstream infection from a brain abscess was presented.Results: In the treatment process, ceftazidime–avibactam (CAZ–AVI) was used empirically for treating the infection and clinical symptoms improved. However, the follow-up bacterial susceptibility test showed that the bacteria were resistant to CAZ–AVI. Considering the low fault tolerance of clinical therapy, the treatment was switched to a 1 mg/kg maintenance dose of susceptible polymyxin B, and TDM showed that the AUC24h, ss of 65.5 mgh/L had been achieved. However, clinical symptoms were not improved after 6 days of treatment. Facing the complicated situation, the cooperation of physicians, clinical pharmacologists, and microbiologists was applied, and the treatment finally succeeded with the pathogen eradicated when polymyxin B dose was increased to 1.4 mg/kg, with the AUC24h, ss of 98.6 mgh/L.Conclusion: MDT collaboration on the premise of scientific and standardized drug management is helpful for the recovery process in patients. The empirical judgment of doctors, the medication recommendations from experts in the field of TDM and pharmacokinetics/pharmacodynamics, and the drug susceptibility results provided by the clinical microbiology laboratory all provide the direction of treatment

    Understanding and modelling softwood hemicellulose hydrolysis and its adsorption to pulp fibres

    No full text
    Pulp and paper facilities are transforming into innovative biorefineries producing chemicals and materials in order to enhance competitiveness and environmental performance. Hemicellulose fractionation and its integration with the pulp mill are crucial to successful biorefinery processes. Fundamental insight is needed to support technology growth. Hemicellulose oligomers were extracted by hydrolysis of softwood chip fines using hot water; conditions were optimized for high yield and high molar mass. Comprehensive characterization of hydrolysate and hydrolyzed solids is reported. A two-dimensional calibration method enabled measurement of oligomer molar mass and concentration simultaneously by size exclusion chromatography. A population balance model describing evolution of hemicellulose molar mass during hydrolysis was posed. The model describes the full evolution of oligomers from initial softwood solubilization, depolymerization to ever-smaller molecules until final generation of degradation products. A maximum yield and corresponding treatment condition for a specific molar mass could be predicted. Likely modes of hemicellulose bond breaking within the wood matrix and bulk solution are proposed and physical insights are explained. This work provides fundamental insights into the relative reactivity of hemicellulose intermediates to facilitate future conversion technologies. Two hemicellulose hydrolysis integration methods to kraft pulping are proposed. First, adsorption of locust bean gum (LBG, model compound) to Northern Bleached Softwood Kraft (NBSK) pulp was shown to improve paper tensile and burst strength and lower refining time by strengthening inter-fibre bonding. LBG adsorption to NBSK pulp fibre is dependent on electrostatic forces, and high salt addition at low pH facilitates adsorption. The adsorption followed pseudo-second-order kinetics and the Langmuir adsorption isotherms, indicating a reversible, monolayer, homogenous adsorption to a finite number of sites on the fibre surface with chemisorption as the rate determining step. Second, mild hydrolysis was combined with kraft pulping as pre-treatment to produce hemicellulose oligomer and kraft pulp. Particle size effects on hydrolysis and subsequent kraft pulping were assessed. Kraft pulping of pre-hydrolyzed softwood chips enhances delignification, reduces fibre yield and chemical consumption, producing fibres with decreased fibre dimension but increased water retention value. The advantages and disadvantages of pre-hydrolysis integration to kraft pulping and associated challenges and future recommendations are discussed.Applied Science, Faculty ofChemical and Biological Engineering, Department ofGraduat

    Advances in Fucoxanthin Research for the Prevention and Treatment of Inflammation-Related Diseases

    No full text
    Owing to its unique structure and properties, fucoxanthin (FX), a carotenoid, has attracted significant attention. There have been numerous studies that demonstrate FX’s anti-inflammatory, antioxidant, antitumor, and anti-obesity properties against inflammation-related diseases. There is no consensus, however, regarding the molecular mechanisms underlying this phenomenon. In this review, we summarize the potential health benefits of FX in inflammatory-related diseases, from the perspective of animal and cellular experiments, to provide insights for future research on FX. Previous work in our lab has demonstrated that FX remarkably decreased LPS-induced inflammation and improved survival in septic mice. Further investigation of the activity of FX against a wide range of diseases will require new approaches to uncover its molecular mechanism. This review will provide an outline of the current state of knowledge regarding FX application in the clinical setting and suggest future directions to implement FX as a therapeutic ingredient in pharmaceutical sciences in order to develop it into a treatment strategy against inflammation-associated disorders
    corecore