48 research outputs found

    A Hybrid BP-EP-VMP Approach to Joint Channel Estimation and Decoding for FTN Signaling over Frequency Selective Fading Channels

    Get PDF
    This paper deals with low-complexity joint channel estimation and decoding for faster-than-Nyquist (FTN) signaling over frequency selective fading channels. The inter-symbol interference (ISI) imposed by FTN signaling and the frequency selective channel are intentionally separated to fully exploit the known structure of the FTN-induced ISI. Colored noise due to the faster sampling rate than that of the Nyquist signaling system is approximated by autoregressive process. A Forney style factor graph representation of the FTN system is developed and Gaussian message passing is performed on the graph. Expectation propagation (EP) is employed to approximate the message from channel decoder to Gaussian distribution. Since the inner product between FTN symbols and channel coefficients is infeasible by belief propagation (BP), we propose to perform variational message passing (VMP) on an equivalent soft node in factor graph to tackle this problem. Simulation results demonstrate that the proposed low-complexity hybrid BP-EP-VMP algorithm outperforms the existing methods in FTN system. Compared with the Nyquist counterpart, FTN signaling with the proposed algorithm is able to increase the transmission rate by over 40%, with only negligible BER performance loss

    Over-expression, Rapid Preparation and Some Properties of C-terminal BARc Region in PICK1

    Get PDF
    A DNA fragment encoding C-terminal BARc region (amino acids 128–416) of rat PICK1 (NP_445912 ) was inserted into a modified vector pMAL-s involving human rhinovirus 3C protease cleavage site to produce a recombinant plasmid, pMAL-s-barc. The construct can express the fusion protein, MBP-BARc in the soluble form in E.coli. To remove the MBP tag, MBP-BARc purified from amylose beads was digested with human rhinovirus 3C protease and the cleavage efficiency is about 95% when the ratio of protein / enzyme (w/w) reaches 50:1, as analyzed on SDS-PAGE. The enzymatic reaction mixture was rapidly separated into two parts, MBP in the supernatant and BARc in the precipitate at the concentration of 1 M ammonium sulfate. In such case, the target protein BARc could be economically produced in a soluble state to be as the sample for measuring its biochemical function, for example, protein-protein interaction and protein-lipid combination

    Observation of Dirac hierarchy in three-dimensional acoustic topological insulators

    Full text link
    Dirac cones (DCs) play a pivotal role in various unique phenomena ranging from massless electrons in graphene to robust surface states in topological insulators (TIs). Recent studies have theoretically revealed a full Dirac hierarchy comprising an eightfold bulk DC, a fourfold surface DC, and a twofold hinge DC, associated with a hierarchy of topological phases including first-order to third-order three-dimensional (3D) topological insulators, using the same 3D base lattice. Here, we report the first experimental observation of the Dirac hierarchy in 3D acoustic TIs. Using acoustic measurements, we unambiguously reveal that lifting of multifold DCs in each hierarchy can induce two-dimensional (2D) topological surface states with a fourfold DC in a first-order 3D TI, one-dimensional (1D) topological hinge states with a twofold DC in a second-order 3D TI, and zero-dimensional (0D) topological corner states in a third-order 3D TI. Our work not only expands the fundamental research scope of Dirac physics, but also opens up a new route for multidimensional robust wave manipulation

    Iterative Receivers for Downlink MIMO-SCMA: Message Passing and Distributed Cooperative Detection

    Get PDF
    IEEE The rapid development of the mobile communications requires ever higher spectral efficiency. The non-orthogonal multiple access (NOMA) has emerged as a promising technology to further increase the access efficiency of wireless networks. Amongst several NOMA schemes, the sparse code multiple access (SCMA) has been shown to be able to achieve better performance. In this paper, we consider a downlink MIMOSCMA system over frequency selective fading channels. For optimal detection, the complexity increases exponentially with the product of the number of users, the number of antennas and the channel length. To tackle this challenge, we propose near optimal low-complexity iterative receivers based on factor graph. By introducing auxiliary variables, a stretched factor graph is constructed and a hybrid belief propagation (BP) and expectation propagation (EP) receiver, named as & #x2018;Stretch-BP-EP & #x2019;, is proposed. Considering the convergence problem of BP algorithm on loopy factor graph, we convexify the Bethe free energy and propose a convergence-guaranteed BP-EP receiver, named as & #x2018;Conv-BP-EP & #x2019;. We further consider cooperative network and propose two distributed cooperative detection schemes to exploit the diversity gain, namely, belief consensus-based algorithm and Bregman alternative direction method of multipliers (ADMM)- based method. Simulation results verify the superior performance of the proposed Conv-BP-EP receiver compared with other methods. The two proposed distributed cooperative detection schemes can improve the bit error rate performance by exploiting the diversity gain. Moreover, Bregman ADMM method outperforms the belief consensus-based algorithm in noisy inter-user links

    A Hybrid BP-EP-VMP Approach to Joint Channel Estimation and Decoding for FTN Signaling over Frequency Selective Fading Channels

    No full text
    This paper deals with low-complexity joint channel estimation and decoding for faster-than-Nyquist (FTN) signaling over frequency selective fading channels. The inter-symbol interference (ISI) imposed by FTN signaling and the frequency selective channel are intentionally separated to fully exploit the known structure of the FTN-induced ISI. Colored noise due to the faster sampling rate than that of the Nyquist signaling system is approximated by autoregressive process. A Forney style factor graph representation of the FTN system is developed and Gaussian message passing is performed on the graph. Expectation propagation (EP) is employed to approximate the message from channel decoder to Gaussian distribution. Since the inner product between FTN symbols and channel coefficients is infeasible by belief propagation (BP), we propose to perform variational message passing (VMP) on an equivalent soft node in factor graph to tackle this problem. Simulation results demonstrate that the proposed low-complexity hybrid BP-EP-VMP algorithm outperforms the existing methods in FTN system. Compared with the Nyquist counterpart, FTN signaling with the proposed algorithm is able to increase the transmission rate by over 40%, with only negligible BER performance loss
    corecore