6 research outputs found

    Safety and efficacy of short-term dual antiplatelet therapy combined with intensive rosuvastatin in acute ischemic stroke

    Get PDF
    Objective: To investigate the safety and efficacy of short-term (7-day) Dual Antiplatelet Therapy (DAPT) with intensive rosuvastatin in Acute Ischemic Stroke (AIS). Methods: In this study, patients with AIS in the emergency department of the hospital from October 2016 to December 2019 were registered and divided into the control group (Single Antiplatelet Therapy [SAPT] + rosuvastatin) and the study group (7-day DAPT + intensive rosuvastatin) according to the therapy regimens. The generalized linear model was used to compare the National Institute of Health Stroke Scale (NIHSS) scores between the two groups during the 21-day treatment. A Cox regression model was used to compare recurrent ischemic stroke, bleeding events, Statin-Induced Liver Injury (SILI), and Statin-Associated Myopathy (SAM) between the two groups during the 90-day follow-up. Results: Comparison of NIHSS scores after 21-day treatment: NIHSS scores in the study group decreased significantly, 0.273-times as much as that in the control group (Odds Ratio [OR] 0.273; 95% Confidence Interval [95% CI] 0.208–0.359; p < 0.001). Comparison of recurrent ischemic stroke during the 90-day follow-up: The therapy of the study group reduced the risk of recurrent stroke by 65% (7.76% vs. 22.82%, Hazard Ratio [HR] 0.350; 95% CI 0.167–0.730; p = 0.005). Comparison of bleeding events: There was no statistical difference between the two groups (7.79% vs. 6.71%, HR = 1.076; 95% CI 0.424–2.732; p = 0.878). No cases of SILI and SAM were found. Conclusions: Short-term DAPT with intensive rosuvastatin effectively relieved the clinical symptoms and significantly reduced the recurrent stroke for patients with mild-to-moderate AIS within 90 days, without increasing bleeding events, SILI and SAM

    18F-labeled FGFR1 peptide: a new PET probe for subtype FGFR1 receptor imaging

    Get PDF
    IntroductionThe fibroblast growth factor receptor (FGFR) family is highly expressed in a variety of tumor types and represents a new target for cancer therapy. Different FGFR subtype aberrations have been found to exhibit highly variable sensitivity and efficacy to FGFR inhibitors.MethodsThe present study is the first to suggest an imaging method for assessing FGFR1 expression. The FGFR1-targeting peptide NOTA-PEG2-KAEWKSLGEEAWHSK was synthesized by manual solid-phase peptide synthesis and high-pressure liquid chromatography (HPLC) purification and then labeled with fluorine-18 using NOTA as a chelator. In vitro and in vivo experiments were conducted to evaluate the stability, affinity and specificity of the probe. Tumor targeting efficacy and biodistribution were evaluated by micro-PET/CT imaging in RT-112, A549, SNU-16 and Calu-3 xenografts.ResultsThe radiochemical purity of [18F]F-FGFR1 was 98.66% ± 0.30% (n = 3) with excellent stability. The cellular uptake rate of [18F]F-FGFR1 in the RT-112 cell line (FGFR1 overexpression) was higher than that in the other cell lines and could be blocked by the presence of excess unlabeled FGFR1 peptide. Micro-PET/CT imaging revealed a significant concentration of [18F]F-FGFR1 in RT-112 xenografts with no or very low uptake in nontargeted organs and tissues, which demonstrated that [18F]F-FGFR1 was selectively taken up by FGFR1-positive tumors.Conclusion[18F]F-FGFR1 showed high stability, affinity, specificity and good imaging capacity for FGFR1-overexpressing tumors in vivo, which provides new application potential in the visualization of FGFR1 expression in solid tumors

    Predicting PD-L1 expression status in patients with non-small cell lung cancer using [18F]FDG PET/CT radiomics

    No full text
    Abstract Background In recent years, immune checkpoint inhibitor (ICI) therapy has greatly changed the treatment prospects of patients with non-small cell lung cancer (NSCLC). Among the available ICI therapy strategies, programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors are the most widely used worldwide. At present, immunohistochemistry (IHC) is the main method to detect PD-L1 expression levels in clinical practice. However, given that IHC is invasive and cannot reflect the expression of PD-L1 dynamically and in real time, it is of great clinical significance to develop a new noninvasive, accurate radiomics method to evaluate PD-L1 expression levels and predict and filter patients who will benefit from immunotherapy. Therefore, the aim of our study was to assess the predictive power of pretherapy [18F]-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT)-based radiomics features for PD-L1 expression status in patients with NSCLC. Methods A total of 334 patients with NSCLC who underwent [18F]FDG PET/CT imaging prior to treatment were analyzed retrospectively from September 2016 to July 2021. The LIFEx7.0.0 package was applied to extract 63 PET and 61 CT radiomics features. In the training group, the least absolute shrinkage and selection operator (LASSO) regression model was employed to select the most predictive radiomics features. We constructed and validated a radiomics model, clinical model and combined model. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to evaluate the predictive performance of the three models in the training group and validation group. In addition, a radiomics nomogram to predict PD-L1 expression status was established based on the optimal predictive model. Results Patients were randomly assigned to a training group (n = 233) and a validation group (n = 101). Two radiomics features were selected to construct the radiomics signature model. Multivariate analysis showed that the clinical stage (odds ratio [OR] 1.579, 95% confidence interval [CI] 0.220–0.703, P < 0.001) was a significant predictor of different PD-L1 expression statuses. The AUC of the radiomics model was higher than that of the clinical model in the training group (0.706 vs. 0.638) and the validation group (0.761 vs. 0.640). The AUCs in the training group and validation group of the combined model were 0.718 and 0.769, respectively. Conclusion PET/CT-based radiomics features demonstrated strong potential in predicting PD-L1 expression status and thus could be used to preselect patients who may benefit from PD-1/PD-L1-based immunotherapy

    A comparison of safety and efficacy between long-term DAPT and intensive statins combined with short-term DAPT for acute ischemic stroke

    No full text
    Abstract Objectives The current study compared the safety and efficacy of long-term dual antiplatelet therapy (DAPT, aspirin plus clopidogrel) and intensive rosuvastatin with short-term DAPT for acute ischemic stroke (AIS). Methods A total of 220 patients were enrolled 72 h after the onset of mild to moderate AIS, and divided into a control group treated with 21-day DAPT and a study group treated with intensive rosuvastatin with 7-day DAPT on a voluntary basis. The primary outcome was recurrent ischemic stroke and hemorrhage during a 90-day follow-up period in an intention-to-treat analysis. The secondary outcome was clinical efficacy with respect to alleviating existing focal nerve defect symptoms. A Cox proportional-hazards model was used to evaluate treatment differences. Results Clinical efficacy was evident in 87.3% of patients in the study group, compared with 84.3% in the control group (p = 0.042). Recurrent ischemic stroke occurred in 9 patients (7.6%) in the study group and in 9 (8.8%) in the control group (p = 0.767). Hemorrhage occurred in 6 patients (5.1%) in the study group and in 15 (14.7%) in the control group (p = 0.023). In comparisons of levels of ALT, AST, LDH, and CK in the two groups before and 2 weeks after therapy, only CK differed significantly (p < 0.001). Conclusions Compared to long-term DAPT, intensive rosuvastatin with short-term DAPT was equivalent in reducing the risk of recurrent ischemic stroke. It alleviated symptoms more rapidly, and significantly reduced the risk of bleeding, without causing an increase in transaminase or muscle enzymes. Clinical trial registration China Clinical Trial Registration Center (ChiCTR1800017809

    Value of pre-treatment 18F-FDG PET/CT radiomics in predicting the prognosis of stage III-IV colorectal cancer

    No full text
    Background and purpose: To investigate the value of radiomics features extracted from pre-treatment 18F-FDG PET/CT in predicting the outcomes of stage III-IV colorectal cancer (CRC), which may assist in clinical management strategies and precise treatment of stage III-IV CRC. Materials and methods: 124 patients with pathologically confirmed stage III-IV CRC who underwent pre-treatment 18F-FDG PET/CT scans were enrolled in this study. The least absolute shrinkage and selection operator Cox regression (LASSO-Cox) was used to select radiomics features, and the radiomics scores (Rad-scores) were calculated to build radiomics models. The performance of radiomics models was represented by the concordance index (C-index) and compared with clinical models and complex model. The bootstrap resampling method was used to create validation sets. Additionally, nomograms were developed based on complex models. Results: The C-indices of the radiomics model for predicting PFS and OS were 0.712 (95%CI: 0.680–0.744) and 0.758 (0.728–0.789), respectively. In the clinical model, these values were 0.690 (0.664–0.0.717) and 0.738 (0.709–0.767), respectively. However, in the complex model were 0.734 (0.705–0.762) and 0.780 (0.754–0.807), respectively. The Kaplan–Meier curves demonstrated that the radiomics model could effectively separate patients with stage III-IV stage CRC into high- and low-risk groups (p < 0.001). Multivariate Cox regression analysis confirmed the independent prognostic value of Rad-scores. Conclusion: Pre-treatment 18F-FDG PET/CT radiomics features can stratify the risk of patients with stage III-IV CRC and accurately predict their outcomes. These findings could be clinically valuable for precision treatment and management decisions in stage III-IV CRC
    corecore