62 research outputs found

    Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train

    Get PDF
    Background, aim, and scope: A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods: This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion: The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations: This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent wa

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Developing a new red band–SEVI–blue band (RSB) enhancement method for recognition the extra-high-voltage transmission line corridor in green mountains

    No full text
    Monitoring the extra-high-voltage transmission line corridor (EHVTLC) in mountains is critical for safe smart-grid operation. However, the transmission lines are so narrow that they are difficult to recognize using multispectral satellite images with a spatial resolution of 10 m. In this study, we developed a new method using the red band–shadow-eliminated vegetation index (SEVI)–blue band (RSB) composite image to enhance the EHVTLC in green mountains (named RSB-enhancement method). Using this method, the EHVTLC becomes evident in the false-color synthesis of the RSB composite of the Sentinel-2 image. Then, we recognized and extracted approximately 342.45 km of the EHVTLC in a mountainous region of Fuzhou City, China, including a 46.73 km three-parallel-lane segment of 1000 kV and a 295.72 km two-parallel-lane segment of 500 kV. Spatial analysis shows that the SEVI mean difference between the EHVTLC and the buffer zone reaches approximately 10%, and three landslides and 2.66 km2 soil erosion reside in the buffer zone which area is approximately 73.67 km2. Finally, the RSB-enhancement method can be used in other satellite images with spatial resolutions of greater than 10 m for enhancement and recognition the transmission line corridors in green mountains

    Assessment of the Sustainable Development Capacity with the Entropy Weight Coefficient Method

    Get PDF
    Sustainable development is widely accepted in the world. How to reflect the sustainable development capacity of a region is an important issue for enacting policies and plans. An index system for capacity assessment is established by employing the Entropy Weight Coefficient method. The results indicate that the sustainable development capacity of Shandong Province is improving in terms of its economy subsystem, resource subsystem, and society subsystem whilst degrading in its environment subsystem. Shandong Province has shown the general trend towards sustainable development. However, the sustainable development capacity can be constrained by the resources such as energy, land, water, as well as environmental protection. These issues are induced by the economy development model, the security of energy supply, the level of new energy development, the end-of-pipe control of pollution, and the level of science and technology commercialization. Efforts are required to accelerate the development of the tertiary industry, the commercialization of high technology, the development of new energy and renewable energy, and the structure optimization of energy mix. Long-term measures need to be established for the ecosystem and environment protection

    Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor

    No full text
    Fano resonances in nanostructures have attracted widespread research interests in the past few years for their potential applications in sensing, switching and nonlinear optics. In this paper, a mid-infrared Fano resonance in a hybrid metal-graphene metamaterial is studied. The hybrid metamaterial consists of a metallic grid enclosing with graphene nanodisks. The Fano resonance arises from the coupling of graphene and metallic plasmonic resonances and it is sharper than plasmonic resonances in pure graphene nanostructures. The resonance strength can be enhanced by increasing the number of graphene layers. The proposed metamaterial can be employed as a high-performance mid-infrared plasmonic sensor with an unprecedented sensitivity of about 7.93 μm/RIU and figure of merit (FOM) of about 158.7

    Identification of byproducts on Azo-dye Degradation by Photo-dependent denitrifying sludge

    No full text

    Effect of photo-dependent denitrify sludge by thin film photocatalysis

    No full text
    corecore