30 research outputs found

    BioModels—15 years of sharing computational models in life science

    Get PDF
    Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the world’s largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse

    Kinetics of Mn(II) oxidation by Leptothrix discophora SS1

    Get PDF
    The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O\u3esub\u3e2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 µM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 µM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 µM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈µg/L) concentrations of Mn oxidizing bacteria

    Determination of optimal fiducial marker across image-guided radiation therapy (IGRT) modalities: Visibility and artifact analysis of gold, carbon, and polymer fiducial markers

    No full text
    The purpose of this study was to evaluate the visibility and artifact created by gold, carbon, and polymer fiducial markers in a simple phantom across computed tomography (CT), kilovoltage (kV), and megavoltage (MV) linear accelerator imaging and MV tomotherapy imaging. Three types of fiducial markers (gold, carbon, and polymer) were investigated for their visibility and artifacts in images acquired with various modalities and with different imaging parameters (kV, mAs, slice thickness). The imaging modalities include kV CT, 2D linac-based kilovoltage and megavoltage X-ray imaging systems, kV cone-beam CT, and normal and fine tomotherapy imaging. The images were acquired on a phantom constructed using Superflab bolus in which markers of each type were inserted into the center layer. The visibility and artifacts produced by each marker were assessed qualitatively and quantitatively. All tested markers could be identified clearly on the acquired CT and linac-based kV images; gold markers demonstrated the highest contrast. On the CT images, gold markers produced a significant artifact, while no artifacts were observed with polymer markers. Only gold markers were visible when using linac-based MV and tomotherapy imaging. For linac-based kV images, the contrast increased with kV and mAs values for all the markers, with the gold being the most pronounced. On CT images, the contrast increased with kV for the gold markers, while decreasing for the polymer and carbon marker. With the bolus phantom used, we found that when kV imaging-based treatment verification equipment is available, polymer and carbon markers may be the preferred choice for target localization and patient treatment positioning verification due to less image artifacts. If MV imaging will be the sole modality for positioning verification, it may be necessary to use gold markers despite the artifacts they create on the simulation CT images

    HDAC5 enhances IRF3 activation and is targeted for degradation by protein C6 from orthopoxviruses including Monkeypox virus and Variola virus

    No full text
    Summary: Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function
    corecore