2 research outputs found

    δ‑MnO<sub>2</sub>–Mn<sub>3</sub>O<sub>4</sub> Nanocomposite for Photochemical Water Oxidation: Active Structure Stabilized in the Interface

    No full text
    Pure phase manganese oxides have been widely studied as water oxidation catalysts, but further improvement of their activities is much challenging. Herein, we report an effective method to improve the water oxidation activity by fabricating a nanocomposite of Mn<sub>3</sub>O<sub>4</sub> and δ-MnO<sub>2</sub> with an active interface. The nanocomposite was achieved by a partial reduction approach which induced an in situ growth of Mn<sub>3</sub>O<sub>4</sub> nanoparticles from the surface of δ-MnO<sub>2</sub> nanosheets. The optimum composition was determined to be 38% Mn<sub>3</sub>O<sub>4</sub> and 62% δ-MnO<sub>2</sub> as confirmed by X-ray photoelectron spectra (XPS) and X-ray absorption spectra (XAS). The δ-MnO<sub>2</sub>–Mn<sub>3</sub>O<sub>4</sub> nanocomposite is a highly active water oxidation catalyst with a turnover frequency (TOF) of 0.93 s<sup>–1</sup>, which is much higher than the individual components of δ-MnO<sub>2</sub> and Mn<sub>3</sub>O<sub>4</sub>. We consider that the enhanced water oxidation activity could be explained by the active interface between two components. At the phase interface, weak Mn–O bonds are introduced by lattice disorder in the transition of hausmannite phase to birnessite phase, which provides active sites for water oxidation catalysis. Our study illustrates a new view to improve water oxidation activity of manganese oxides

    A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries

    No full text
    Novel sulfur (S) anchoring materials and the corresponding mechanisms for suppressing capacity fading are urgently needed to advance the performance of Li/S batteries. Here, we designed and synthesized a graphene-like oxygenated carbon nitride (OCN) host material that contains tens of micrometer scaled two-dimensional (2D) rippled sheets, micromesopores, and oxygen heteroatoms. N content can reach as high as 20.49 wt %. A sustainable approach of one-step self-supporting solid-state pyrolysis (OSSP) was developed for the low-cost and large-scale production of OCN. The urea in solid sources not only provides self-supporting atmospheres but also produces graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) working as 2D layered templates. The S/OCN cathode can deliver a high specific capacity of 1407.6 mA h g<sup>–1</sup> at C/20 rate with 84% S utilization and retain improved reversible capacity during long-term cycles at high current density. The increasing micropores, graphitic N, ether, and carboxylic O at the large sized OCN sheet favor S utilization and trapping for polysulfides
    corecore