24 research outputs found

    Feature-based encoding of face identity by single neurons in the human medial temporal lobe

    Get PDF
    Neurons in the human medial temporal lobe (MTL) that are selective for the identity of specific people are classically thought to encode identity invariant to visual features. However, it remains largely unknown how visual information from higher visual cortex is translated into a semantic representation of an individual person. Here, we show that some MTL neurons are selective to multiple different face identities on the basis of shared features that form clusters in the representation of a deep neural network trained to recognize faces. Contrary to prevailing views, we find that these neurons represent an individual’s face with feature-based encoding, rather than through association with concepts. The response of feature neurons did not depend on face identity nor face familiarity, and the region of feature space to which they are tuned predicted their response to new face stimuli. Our results provide critical evidence bridging the perception-driven representation of facial features in the higher visual cortex and the memory-driven representation of semantics in the MTL, which may form the basis for declarative memory

    Data release for: A Critical Period for Developing Face Recognition

    No full text
    <p>v1.1</p><ul><li>Data release</li><li>Change the deposit title</li><li>Add author list</li></ul&gt

    Face identity coding in the deep neural network and primate brain

    Get PDF
    A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks

    High-Resolution Radar Target Recognition via Inception-Based VGG (IVGG) Networks

    No full text
    Aiming at high-resolution radar target recognition, new convolutional neural networks, namely, Inception-based VGG (IVGG) networks, are proposed to classify and recognize different targets in high range resolution profile (HRRP) and synthetic aperture radar (SAR) signals. The IVGG networks have been improved in two aspects. One is to adjust the connection mode of the full connection layer. The other is to introduce the Inception module into the visual geometry group (VGG) network to make the network structure more suik / for radar target recognition. After the Inception module, we also add a point convolutional layer to strengthen the nonlinearity of the network. Compared with the VGG network, IVGG networks are simpler and have fewer parameters. The experiments are compared with GoogLeNet, ResNet18, DenseNet121, and VGG on 4 datasets. The experimental results show that the IVGG networks have better accuracies than the existing convolutional neural networks
    corecore