112 research outputs found

    Spin photonics on chip based on a twinning crystal metamaterial

    Full text link
    Two-dimensional photonic circuits with high capacity are essential for a wide range of applications in next-generation photonic information technology and optoelectronics. Here we demonstrate a multi-channel spin-dependent photonic device based on a twinning crystal metamaterial. The structural symmetry and material symmetry of the twinning crystal metamaterial enable a total of 4 channels carrying different transverse spins because of the spin-momentum locking. The orientation of the anisotropy controls the propagation direction of each signal, and the rotation of the E-field with respect to energy flow determines the spin characteristics during input/output coupling. Leveraging this mechanism, the spin of an incident beam can be maintained during propagation on-chip and then delivered back into the free space, offering a new scheme for metamaterial-based spin-controlled nano-photonic applications

    Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction

    Full text link
    The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can improve parking efficiency, help urban planning, and ultimately alleviate city congestion. However, it is a non-trivial task for predicting citywide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e.g., camera, ultrasonic sensor, and GPS). To this end, we propose Semi-supervised Hierarchical Recurrent Graph Neural Network (SHARE) for predicting city-wide parking availability. Specifically, we first propose a hierarchical graph convolution structure to model non-Euclidean spatial autocorrelation among parking lots. Along this line, a contextual graph convolution block and a soft clustering graph convolution block are respectively proposed to capture local and global spatial dependencies between parking lots. Additionally, we adopt a recurrent neural network to incorporate dynamic temporal dependencies of parking lots. Moreover, we propose a parking availability approximation module to estimate missing real-time parking availabilities from both spatial and temporal domain. Finally, experiments on two real-world datasets demonstrate the prediction performance of SHARE outperforms seven state-of-the-art baselines.Comment: 8 pages, 9 figures, AAAI-202

    Irregular Traffic Time Series Forecasting Based on Asynchronous Spatio-Temporal Graph Convolutional Network

    Full text link
    Accurate traffic forecasting at intersections governed by intelligent traffic signals is critical for the advancement of an effective intelligent traffic signal control system. However, due to the irregular traffic time series produced by intelligent intersections, the traffic forecasting task becomes much more intractable and imposes three major new challenges: 1) asynchronous spatial dependency, 2) irregular temporal dependency among traffic data, and 3) variable-length sequence to be predicted, which severely impede the performance of current traffic forecasting methods. To this end, we propose an Asynchronous Spatio-tEmporal graph convolutional nEtwoRk (ASeer) to predict the traffic states of the lanes entering intelligent intersections in a future time window. Specifically, by linking lanes via a traffic diffusion graph, we first propose an Asynchronous Graph Diffusion Network to model the asynchronous spatial dependency between the time-misaligned traffic state measurements of lanes. After that, to capture the temporal dependency within irregular traffic state sequence, a learnable personalized time encoding is devised to embed the continuous time for each lane. Then we propose a Transformable Time-aware Convolution Network that learns meta-filters to derive time-aware convolution filters with transformable filter sizes for efficient temporal convolution on the irregular sequence. Furthermore, a Semi-Autoregressive Prediction Network consisting of a state evolution unit and a semiautoregressive predictor is designed to effectively and efficiently predict variable-length traffic state sequences. Extensive experiments on two real-world datasets demonstrate the effectiveness of ASeer in six metrics

    C-Watcher: A Framework for Early Detection of High-Risk Neighborhoods Ahead of COVID-19 Outbreak

    Full text link
    The novel coronavirus disease (COVID-19) has crushed daily routines and is still rampaging through the world. Existing solution for nonpharmaceutical interventions usually needs to timely and precisely select a subset of residential urban areas for containment or even quarantine, where the spatial distribution of confirmed cases has been considered as a key criterion for the subset selection. While such containment measure has successfully stopped or slowed down the spread of COVID-19 in some countries, it is criticized for being inefficient or ineffective, as the statistics of confirmed cases are usually time-delayed and coarse-grained. To tackle the issues, we propose C-Watcher, a novel data-driven framework that aims at screening every neighborhood in a target city and predicting infection risks, prior to the spread of COVID-19 from epicenters to the city. In terms of design, C-Watcher collects large-scale long-term human mobility data from Baidu Maps, then characterizes every residential neighborhood in the city using a set of features based on urban mobility patterns. Furthermore, to transfer the firsthand knowledge (witted in epicenters) to the target city before local outbreaks, we adopt a novel adversarial encoder framework to learn "city-invariant" representations from the mobility-related features for precise early detection of high-risk neighborhoods, even before any confirmed cases known, in the target city. We carried out extensive experiments on C-Watcher using the real-data records in the early stage of COVID-19 outbreaks, where the results demonstrate the efficiency and effectiveness of C-Watcher for early detection of high-risk neighborhoods from a large number of cities.Comment: 11 pages, accepted by AAAI 2021, appendix is include

    Spatial Object Recommendation with Hints: When Spatial Granularity Matters

    Full text link
    Existing spatial object recommendation algorithms generally treat objects identically when ranking them. However, spatial objects often cover different levels of spatial granularity and thereby are heterogeneous. For example, one user may prefer to be recommended a region (say Manhattan), while another user might prefer a venue (say a restaurant). Even for the same user, preferences can change at different stages of data exploration. In this paper, we study how to support top-k spatial object recommendations at varying levels of spatial granularity, enabling spatial objects at varying granularity, such as a city, suburb, or building, as a Point of Interest (POI). To solve this problem, we propose the use of a POI tree, which captures spatial containment relationships between POIs. We design a novel multi-task learning model called MPR (short for Multi-level POI Recommendation), where each task aims to return the top-k POIs at a certain spatial granularity level. Each task consists of two subtasks: (i) attribute-based representation learning; (ii) interaction-based representation learning. The first subtask learns the feature representations for both users and POIs, capturing attributes directly from their profiles. The second subtask incorporates user-POI interactions into the model. Additionally, MPR can provide insights into why certain recommendations are being made to a user based on three types of hints: user-aspect, POI-aspect, and interaction-aspect. We empirically validate our approach using two real-life datasets, and show promising performance improvements over several state-of-the-art methods

    Intelligent Exploration for User Interface Modules of Mobile App with Collective Learning

    Full text link
    A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods to determine design variables for user interface modules except for relying on the judgment of designers. Usually, a laborious post-processing step is necessary to verify the key change of each design variable. Therefore, there is a only very limited amount of design solutions that can be tested. It is timeconsuming and almost impossible to figure out the best design solutions as there are many modules. To this end, we introduce FEELER, a framework to fast and intelligently explore design solutions of user interface modules with a collective machine learning approach. FEELER can help designers quantitatively measure the preference score of different design solutions, aiming to facilitate the designers to conveniently and quickly adjust user interface module. We conducted extensive experimental evaluations on two real-life datasets to demonstrate its applicability in real-life cases of user interface module design in the Baidu App, which is one of the most popular mobile apps in China.Comment: 10 pages, accepted as a full paper in KDD 202

    Association of Geriatric Nutritional Risk Index with Mortality in Hemodialysis Patients: A Meta-Analysis of Cohort Studies

    Get PDF
    Background/Aims: Geriatric nutritional risk index (GNRI) was developed as a β€œnutrition-related” risk index and was reported in different populations as associated with the risk of all-cause and cardiovascular morbidity and mortality. Therefore, GNRI can be used to classify patients according to a risk of complications in relation to conditions associated with protein-energy wasting (PEW). However, not all reports pointed to the prognostic ability of the GNRI. The purpose of this study was to assess the associations of GNRI with mortality in chronic hemodialysis patients. Methods: We electronically searched original articles published in peer-reviewed journals from their inception to September 2018 in The PubMed, Embase, and the Cochrane Library databases. The primary outcome was all-cause and cardiovascular mortality. We pooled unadjusted and adjusted odds ratios (ORs) with 95% confidence intervals (95% CIs) using Review Manager 5.3 software. Results: A total of 10,739 patients from 19 cohort studies published from 2010 to 2018 were included. A significant negative association was found between the GNRI and all-cause mortality in patients with chronic hemodialysis (OR, 0.90; 95% CI, 0.84-0.97, p=0.004) (per unit increase) and (OR, 2.15; 95% CI, 1.88-2.46, p<0.00001) (low vs. high GNRI). Moreover, there was also a significant negative association between the GNRI (per unit increase) and cardiovascular events (OR, 0.98; 95% CI, 0.97-1.00, p=0.01), as well as cardiovascular mortality (OR, 0.89; 95% CI, 0.80-0.99, p=0.03). Conclusion: Our findings supported the hypothesis that the low GNRI is associated with an increased risk of all-cause and cardiovascular mortality in chronic hemodialysis patients. Based on our literature review, GNRI has been found to be an effective tool for identifying patients with nutrition-related risk of all-cause and cardiovascular disease

    Epigenetic Drugs Can Stimulate Metastasis through Enhanced Expression of the Pro-Metastatic Ezrin Gene

    Get PDF
    Ezrin has been reported to be upregulated in many tumors and to participate in metastatic progression. No study has addressed epigenetic modification in the regulation of Ezrin gene expression, the importance of which is unknown. Here, we report that highly metastatic rhabdomyosarcoma (RMS) cells with high levels of Ezrin have elevated acetyl-H3-K9 and tri-methyl-H3-K4 as well as reduced DNA methylation at the Ezrin gene promoter. Conversely, poorly metastatic RMS cells with low levels of Ezrin have reduced acetyl-H3-K9 and elevated methylation. Thus epigenetic covalent modifications to histones within nucleosomes of the Ezrin gene promoter are linked to Ezrin expression, which in fact can be regulated by epigenetic mechanisms. Notably, treatment with histone deacetylase (HDAC) inhibitors or DNA demethylating agents could restore Ezrin expression and stimulate the metastatic potential of poorly metastatic RMS cells characterized by low Ezrin levels. However, the ability of epigenetic drugs to stimulate metastasis in RMS cells was inhibited by expression of an Ezrin-specific shRNA. Our data demonstrate the potential risk associated with clinical application of broadly acting covalent epigenetic modifiers, and highlight the value of combination therapies that include agents specifically targeting potent pro-metastatic genes
    • …
    corecore