12,260 research outputs found

    The nature of obscuration in AGN: II. insights from clustering properties

    Full text link
    Based on large optical and mid-infrared (IR) surveys, we investigate the relation between nuclear activity in local Seyfert 2 galaxies and galaxy interactions using a statistical neighbour counting technique. At the same level of host galaxy star formation (SF), we find that active galactic nuclei (AGNs) with stronger [OIII] emission lines do not show an excess of near neighbours, while AGNs with stronger mid-IR emission do have more near neighbours within a projected distance of 100 kpc. The excess neighbour count increases with decreasing projected radius. These results suggest a phase of torus formation during galaxy interactions.Comment: 5 pages, 2 figures, accepted to MNRA

    Stellar mass versus stellar velocity dispersion: which is better for linking galaxies to their dark matter halos?

    Full text link
    It was recently suggested that, compared to its stellar mass (M*), the central stellar velocity dispersion (sigma*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central alaxies in groups as function of M* and sigma*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M* and sigma* and a reference galaxy sample, from which we determine both the projected CCF, w_p(r_p), and the velocity dispersion profile (VDP) of satellites around the centrals. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M*, we find very weak or no correlation between halo mass and sigma*. In contrast, strong mass dependence is clearly seen even when sigma* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on sigma* fixed M*, as recently discovered by Wake et al. (2012), may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.Comment: 4 pages, 4 figures, accepted for publication in ApJ Letters, minor revisions in the tex

    A probabilistic method for gradient estimates of some geometric flows

    Full text link
    In general, gradient estimates are very important and necessary for deriving convergence results in different geometric flows, and most of them are obtained by analytic methods. In this paper, we will apply a stochastic approach to systematically give gradient estimates for some important geometric quantities under the Ricci flow, the mean curvature flow, the forced mean curvature flow and the Yamabe flow respectively. Our conclusion gives another example that probabilistic tools can be used to simplify proofs for some problems in geometric analysis.Comment: 22 pages. Minor revision to v1. Accepted for publication in Stochastic Processes and their Application

    Detection of the large scale alignment of massive galaxies at z~0.6

    Full text link
    We report on the detection of the alignment between galaxies and large-scale structure at z~0.6 based on the CMASS galaxy sample from the Baryon Oscillation Spectroscopy Survey data release 9. We use two statistics to quantify the alignment signal: 1) the alignment two-point correlation function which probes the dependence of galaxy clustering at a given separation in redshift space on the projected angle (theta_p) between the orientation of galaxies and the line connecting to other galaxies, and 2) the cos(2theta)-statistic which estimates the average of cos(2theta_p) for all correlated pairs at given separation. We find significant alignment signal out to about 70 Mpc/h in both statistics. Applications of the same statistics to dark matter halos of mass above 10^12 M_sun/h in a large cosmological simulation show similar scale-dependent alignment signals to the observation, but with higher amplitudes at all scales probed. We show that this discrepancy may be partially explained by a misalignment angle between central galaxies and their host halos, though detailed modeling is needed in order to better understand the link between the orientations of galaxies and host halos. In addition, we find systematic trends of the alignment statistics with the stellar mass of the CMASS galaxies, in the sense that more massive galaxies are more strongly aligned with the large-scale structure.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter
    corecore