4,121 research outputs found

    Controllable Goos-H\"{a}nchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field

    Full text link
    The quantum Goos-H\"{a}nchen shift for ballistic electrons is investigated in a parabolic potential well under a uniform vertical magnetic field. It is found that the Goos-H\"{a}nchen shift can be negative as well as positive, and becomes zero at transmission resonances. The beam shift depends not only on the incident energy and incidence angle, but also on the magnetic field and Landau quantum number. Based on these phenomena, we propose an alternative way to realize the spin beam splitter in the proposed spintronic device, which can completely separate spin-up and spin-down electron beams by negative and positive Goos-H\"{a}nchen shifts.Comment: 6 pages, 6 figure

    Online Updating of Statistical Inference in the Big Data Setting

    Full text link
    We present statistical methods for big data arising from online analytical processing, where large amounts of data arrive in streams and require fast analysis without storage/access to the historical data. In particular, we develop iterative estimating algorithms and statistical inferences for linear models and estimating equations that update as new data arrive. These algorithms are computationally efficient, minimally storage-intensive, and allow for possible rank deficiencies in the subset design matrices due to rare-event covariates. Within the linear model setting, the proposed online-updating framework leads to predictive residual tests that can be used to assess the goodness-of-fit of the hypothesized model. We also propose a new online-updating estimator under the estimating equation setting. Theoretical properties of the goodness-of-fit tests and proposed estimators are examined in detail. In simulation studies and real data applications, our estimator compares favorably with competing approaches under the estimating equation setting.Comment: Submitted to Technometric

    Unconventional Superconducting Symmetry in a Checkerboard Antiferromagnet

    Full text link
    We use a renormalized mean field theory to study the Gutzwiller projected BCS states of the extended Hubbard model in the large UU limit, or the tt-t′t'-JJ-J′J' model on a two-dimensional checkerboard lattice. At small t′/tt'/t, the frustration due to the diagonal terms of t′t' and J′J' does not alter the dx2−y2d_{x^2-y^2}-wave pairing symmetry, and the negative (positive) t′/tt'/t enhances (suppresses) the pairing order parameter. At large t′/tt'/t, the ground state has an extended s-wave symmetry. At the intermediate t′/tt'/t, the ground state is d+idd+id or d+isd+is-wave with time reversal symmetry broken.Comment: 6 pages, 6 figure

    Acoustic meta-stethoscope for cardiac auscultation

    Full text link
    Straight cylindrical stethoscopes serve as an important alternative to conventional stethoscopes whose application in the treatment of infectious diseases might be limited by the use of protective clothing. Yet their miniaturization is challenging due to the low-frequency of bioacoustics signal. Here, we design and experimentally implement a meta-stethoscope with subwavelength size, simple fabrication, easy assembly yet high sensitivity, which simply comprises multiple round perforated plate units and a cylindrical shell. We elucidate our proposed mechanism by analytically deriving the frequency response equation, which proves that the equivalent acoustic propagation path is substantially increased by the high-index metamaterial, enabling downscaling of the meta-stethoscope to subwavelength footprint. The acoustic performance of meta-stethoscope is experimentally characterized by monitoring the cardiac auscultation on clothed human body. The simulated and measured results agree well, with both showing the expected enhancement of sensitivity of our proposed meta-stethoscope (~ 10 dB) within the predicted working frequency range from 80 to 130 Hz despite its compactness and simplicity. Our designed portable, detachable yet effective meta-stethoscope opens a route to metamaterial-enabled stethoscope paradigm, with potential applications in diverse scenarios such as medical diagnosis and acoustic sensing.Comment: 14 pages, 3 figure

    Bis(μ-5-carb­oxy­benzene-1,3-dicarboxyl­ato)-κ3 O 1,O 1′:O 3;κ3 O 3:O 1,O 1′-bis­[(2-phenyl-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene-κ2 N 7,N 8)lead(II)]

    Get PDF
    In the title compound, [Pb2(C9H4O6)2(C19H12N4)2], the PbII atom is five-coordinated by two N atoms from a chelating 2-phenyl-1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene (L) ligand and three O atoms from two Hbtc ligands (H3btc is benzene-1,3,5-tricarb­oxy­lic acid), resulting in a distorted PbN2O3 coordination. Two PbII atoms are bridged by the Hbtc ligands, forming a discrete centrosymmetric dinuclear complex. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds and π–π inter­actions between the pyridine and imidazole rings, and between the pyridyl rings of the L ligands [centroid–centroid distances = 3.600 (6) and 3.732 (6) Å] lead to a three-dimensional supra­molecular structure
    • …
    corecore