3,511 research outputs found

    Pose-Guided Multi-Granularity Attention Network for Text-Based Person Search

    Full text link
    Text-based person search aims to retrieve the corresponding person images in an image database by virtue of a describing sentence about the person, which poses great potential for various applications such as video surveillance. Extracting visual contents corresponding to the human description is the key to this cross-modal matching problem. Moreover, correlated images and descriptions involve different granularities of semantic relevance, which is usually ignored in previous methods. To exploit the multilevel corresponding visual contents, we propose a pose-guided multi-granularity attention network (PMA). Firstly, we propose a coarse alignment network (CA) to select the related image regions to the global description by a similarity-based attention. To further capture the phrase-related visual body part, a fine-grained alignment network (FA) is proposed, which employs pose information to learn latent semantic alignment between visual body part and textual noun phrase. To verify the effectiveness of our model, we perform extensive experiments on the CUHK Person Description Dataset (CUHK-PEDES) which is currently the only available dataset for text-based person search. Experimental results show that our approach outperforms the state-of-the-art methods by 15 \% in terms of the top-1 metric.Comment: published in AAAI2020(oral

    Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation

    Get PDF
    Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24–31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method

    RL-MD: A Novel Reinforcement Learning Approach for DNA Motif Discovery

    Full text link
    The extraction of sequence patterns from a collection of functionally linked unlabeled DNA sequences is known as DNA motif discovery, and it is a key task in computational biology. Several deep learning-based techniques have recently been introduced to address this issue. However, these algorithms can not be used in real-world situations because of the need for labeled data. Here, we presented RL-MD, a novel reinforcement learning based approach for DNA motif discovery task. RL-MD takes unlabelled data as input, employs a relative information-based method to evaluate each proposed motif, and utilizes these continuous evaluation results as the reward. The experiments show that RL-MD can identify high-quality motifs in real-world data.Comment: This paper is accepted by DSAA2022. The 9th IEEE International Conference on Data Science and Advanced Analytic
    • …
    corecore