326 research outputs found

    Design of circularly-polarized high-gain green antenna

    Get PDF
    Abstract -A circularly-polarized high-gain green antenna using a solar panel as a frequency selective surface for FabryPerot cavity is proposed. First, the transmission and reflection coefficients of a square solar cell were analyzed for predicting the operating frequency of a green antenna with circular polarization and high gain operation. Next, the green antenna was constructed, and it consists of a square solar panel with 6 × 6 solar cells and a circularly polarized patch antenna backed with a metal ground plate. The achieved impedance bandwidth of the proposed green antenna is 154 MHz (2.928 ~ 3.082 GHz), and the CP bandwidth is 76 MHz (2.907 ~ 2.983 GHz). The antenna gain within the CP bandwidth is 13.0 ~ 13.9 dBic

    Solving Solar Neutrino Puzzle via LMA MSW Conversion

    Full text link
    We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNO's salt phase itself restricts quite a lot the allowed region's area. Reactor neutrinos play an important role in determining oscillation parameters. KamLAND gives decisive conclusion on the solution to the solar neutrino puzzle, in particular, the spectral distortion in the 766.3 Ty KamLAND data gives another new improvement in the constraint of solar MSW-LMA solutions. We confirm that at 99.73% C.L. the high-LMA solution is excluded.Comment: 6 eps figure

    Effects of Nanoparticle Size and Radiation Energy on Copper-Cysteamine Nanoparticles for X-ray Induced Photodynamic Therapy

    Get PDF
    The Copper-cysteamine (Cu-Cy) nanoparticle is a novel sensitizer with a potential to increase the effectiveness of radiation therapy for cancer treatment. In this work, the effect of nanoparticle size and the energy of X-rays on the effectiveness of radiation therapy are investigated. The effect of the particle size on their performance is very complicated. The nanoparticles with an average size of 300 nm have the most intense photoluminescence, the nanoparticles with the average size of 100 nm have the most reactive oxygen species production upon X-ray irradiation, while the nanoparticles with the average size of 40 nm have the best outcome in the tumor suppression in mice upon X-ray irradiation. For energy, 90 kVp radiation resulted in smaller tumor sizes than 250 kVp or 350 kVp radiation energies. Overall, knowledge of the effect of nanoparticle size and radiation energy on radiation therapy outcomes could be useful for future applications of Cu-Cy nanoparticles

    (E)-N′-(5-Chloro-2-hydroxy­benzyl­idene)-4-(8-quinol­yloxy)butanohydrazide monohydrate

    Get PDF
    The crystal of the title Schiff base compound, C20H18ClN3O3·H2O, was twinned by a twofold rotation about (100). The asymmetric unit contains two crystallographically independent mol­ecules with similar conformations, and two water mol­ecules. The C=N—N angles of 115.7 (6) and 116.2 (6)° are significantly smaller than the ideal value of 120° expected for sp 2-hybridized N atoms and the dihedral angles between the benzene ring and quinoline ring system in the two mol­ecules are 52.5 (7) and 53.9 (7)°. The mol­ecules aggregate via C—Cl⋯π and π–π inter­actions [centroid–centroid distances = 3.696 (5)–3.892 (5) Å] and weak C—H⋯O inter­actions as parallel sheets, which are further linked by water mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds into a supra­molecular two-dimensional network

    Association of the CTLA4 Gene with Graves' Disease in the Chinese Han Population

    Get PDF
    To determine whether genetic heterogeneity exists in patients with Graves' disease (GD), the cytotoxic T-lymphocyte associated 4 (CTLA-4) gene, which is implicated a susceptibility gene for GD by considerable genetic and immunological evidence, was used for association analysis in a Chinese Han cohort recruited from various geographic regions. Our association study for the SNPs in the CTLA4 gene in 2640 GD patients and 2204 control subjects confirmed that CTLA4 is the susceptibility gene for GD in the Chinese Han population. Moreover, the logistic regression analysis in the combined Chinese Han cohort revealed that SNP rs231779 (allele frequencies p = 2.81×10−9, OR = 1.35, and genotype distributions p = 2.75×10−9, OR = 1.42) is likely the susceptibility variant for GD. Interestingly, the logistic regression analysis revealed that SNP rs35219727 may be the susceptibility variant to GD in the Shandong population; however, SNP, rs231779 in the CTLA4 gene probably independently confers GD susceptibility in the Xuzhou and southern China populations. These data suggest that the susceptibility variants of the CTLA4 gene varied between the different geographic populations with GD

    Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors

    Full text link
    We investigate the role of quantum confinement on the performance of gas sensors based on two-dimensional InAs membranes. Pd-decorated InAs membranes configured as H2 sensors are shown to exhibit strong thickness dependence, with ~100x enhancement in the sensor response as the thickness is reduced from 48 to 8 nm. Through detailed experiments and modeling, the thickness scaling trend is attributed to the quantization of electrons which favorably alters both the position and the transport properties of charge carriers; thus making them more susceptible to surface phenomena
    corecore