5,985 research outputs found

    Quantum speed limit for relativistic spin-0 and spin-1 bosons on commutative and noncommutative planes

    Get PDF
    Quantum speed limits of relativistic charged spin-0 and spin-1 bosons in the background of a homogeneous magnetic field are studied on both commutative and oncommutative planes. We show that, on the commutative plane, the average speeds of wave packets along the radial direction during the interval in which a quantum state evolving from an initial state to the orthogonal final one can not exceed the speed of light, regardless of the intensities of the magnetic field. However, due to the noncommutativity, the average speeds of the wave packets on noncommutative plane will exceed the speed of light in vacuum provided the intensity of the magnetic field is strong enough. It is a clear signature of violating Lorentz invariance in quantum mechanics region.Comment: 8 pages, no figures. arXiv admin note: text overlap with arXiv:1702.0316

    Photometric properties and luminosity function of nearby massive early-type galaxies

    Full text link
    We perform photometric analyses for a bright early-type galaxy (ETG) sample with 2949 galaxies (Mr<22.5M_{\rm r}<-22.5 mag) in the redshift range of 0.05 to 0.15, drawn from the SDSS DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for brightest galaxies (Mr<23M_{\rm r}<-23 mag), our Petrosian magnitudes, and isophotal magnitudes to 25 mag/arcsec2{\rm mag/arcsec^2} and 1\% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r50r_{50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright-end of the rr-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al. (2003), and the stellar mass densities at M5×1011MM_{\ast}\sim 5\times10^{11} M_{\odot} and M1012MM_{\ast}\sim 10^{12} M_{\odot} are a few tenths and a factor of few higher than those of Bernardi et al. (2010). These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.Comment: 43 pages, 14 figures, version accepted for publication in the Astrophysical Journa

    Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3_3

    Full text link
    We study dynamical fermion mass generation in (2+1)-dimensional quantum electrodynamics with a gauge field coupling to massless Dirac fermions and non-relativistic scalar bosons. We calculate the fermion velocity renormalization and then examine its influence on dynamical mass generation by using the Dyson-Schwinger equation. It is found that dynamical mass generation takes place even after including the scalar bosons as long as the bosonic compressibility parameter ξ\xi is sufficiently small. In addition, the fermion velocity renormalization enhances the dynamically generated mass.Comment: 6 pages, 3 figures, Chinese Physics Letter, Vol 29, page 057401(2012

    Summer Upwelling in the Northern Continental Shelf of the South China Sea

    Get PDF
    Summer upwelling system in the northern continental shelf of the South China Sea (NCSCS) is investigated with the Pathfinder, Advanced Very High Resolution Radiometer (AVHRR) Sea Surface Temperature (SST), and a three-dimensional, baroclinic, non-linear, numerical model forced by QuikSCAT winds. The AVHRR observation and modelling results have shown the upwelling is a regular phenomenon during summer in the NCSCS. Continental shelf upwelling characteristics are clearly found in the surface and subsurface water, such as low temperature, high salinity and high potential density. They respectively locate in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (Qiongdong Upwelling), and the inshore areas from the Shantou Coast to the Nanri Islands of Fujian Coast (Yuedong Upwelling). The centra of the upwelling are mostly located in 111°10′E、19°45′N between the Qinglan Bay and the Qizhou Archipelagoes of eastern Hainan Island, 110°15′E、18°25′N near the Lingshui Bay, 116°45′E、22°50′N of the Shantou Coast and 118°E、23°40′N near the Taiwan Shoal. It is also found that the upwelling areas and centra from modelling results are in agreement with the AVHRR SST

    Dynamic Time-history Analysis on Wind-induced Response of Light-weight Roof System

    Get PDF
    Severe damage to light-weight roof system occur when exposed to strong wind loading. Damage investigations and wind load-bearing capacity tests of light-weight roof system reveal that the connection damage of roof sheeting and fastener is the most serious. Wind pressure distributions on the roof of gabled steel frame measured in a wind tunnel are described. Secondly, illustrated by the example of the classic standing-lock roof system, the wind-induced forces for the concealed clips estimated by the building code and time-history analysis based on wind tunnel test, respectively, are compared. The results indicate that the uniform gust factor used in the building code for the wind-induced forces for the clips cannot guarantee that all the clips have strong strength in an actual wind load. Any of wind-induced forces for the clips varies in a relative large rang affected by the fluctuation and spatial correlation of wind pressure. The building code generally provided inconsistent estimations of the wind-induced forces of the clips and the true loaded wind area should be evaluated by considering the characteristics of the spatial correlation of wind pressures relative to the structural framing

    Cyber-risks in the Industrial Internet of Things (IIoT): towards a method for continuous assessment.

    Get PDF
    Continuous risk monitoring is considered in the context of cybersecurity management for the Industrial Internet-of-Thing. Cyber risk management best practice is for security controls to be deployed and configured in order to bring down risk exposure to an acceptable level. However, threats and known vulnerabilities are subject to change, and estimates of risk are subject to many uncertainties, so it is important to review risk assessments and update controls when required. Risks are typically reviewed periodically (e.g. once per month), but the accelerating pace of change means that this approach is not sustainable, and there is a requirement for continuous monitoring of cybersecurity risks. The method described in this paper aims to alert security staff of significant changes or trends in estimated risk exposure to facilitate rational and timely decisions. Additionally, it helps predict the success and impact of a nascent security breach allowing better prioritisation of threats and selection of appropriate responses. The method is illustrated using a scenario based on environmental control in a data centre

    Quantum broadcast communication

    Get PDF
    Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just consider a simple broadcast communication task in quantum scenario, which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger state to realize a task that the central party broadcasts his secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver who share each of their authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, which the central party can broadcast the secret to any subset of the legal receivers

    Effects of polysaccharide from Lycium barbarum in alloxan-induced diabetic mice

    Get PDF
    A study was undertaken to evaluate the effects of polysaccharide from Lycium barbarum (LBP) in alloxan-induced diabetic mice. The various parameters studied included body weight, fasting blood glucose levels, total cholesterol (TC) and triglyceride (TG) in diabetic and normal mice. LBP treatment(20, 40 mg/ kg body weight) for 28 days resulted in a significant decrease in the concentration of fasting blood glucose (FBG), total cholesterol (TC) and triglyceride (TG) in diabetes mellitus mice. Furthermore, LBP significantly increased body weight (bw). The data demonstrated LBP at the dose of 40 mg/kg bw exhibited the optimal effect
    corecore