12,593 research outputs found

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    Eigenstates of Paraparticle Creation Operators

    Get PDF
    Eigenstates of the parabose and parafermi creation operators are constructed. In the Dirac contour representation, the parabose eigenstates correspond to the dual vectors of the parabose coherent states. In order p=2p=2, conserved-charge parabose creation operator eigenstates are also constructed. The contour forms of the associated resolutions of unity are obtained.Comment: 14 pages, LaTex file, no macros, no figure

    Quantum entropy of the Kerr black hole arising from gravitational perturbation

    Get PDF
    The quantum entropy of the Kerr black hole arising from gravitational perturbation is investigated by using Null tetrad and \'t Hooft\'s brick-wall model. It is shown that effect of the graviton\'s spins on the subleading correction is dependent of the square of the spins and the angular momentum per unit mass of the black hole, and contribution of the logarithmic term to the entropy will be positive, zero, and negative for different value of a/r+a/r_+.Comment: 8 pages, 1 figure, Latex. to appear in Phys. Rev.

    Pivotal estimation in high-dimensional regression via linear programming

    Full text link
    We propose a new method of estimation in high-dimensional linear regression model. It allows for very weak distributional assumptions including heteroscedasticity, and does not require the knowledge of the variance of random errors. The method is based on linear programming only, so that its numerical implementation is faster than for previously known techniques using conic programs, and it allows one to deal with higher dimensional models. We provide upper bounds for estimation and prediction errors of the proposed estimator showing that it achieves the same rate as in the more restrictive situation of fixed design and i.i.d. Gaussian errors with known variance. Following Gautier and Tsybakov (2011), we obtain the results under weaker sensitivity assumptions than the restricted eigenvalue or assimilated conditions

    Entropies of Rotating Charged Black Holes from Conformal Field Theory at Killing Horizons

    Get PDF
    The covariant phase technique is used to compute the constraint algebra of the stationary axisymmetric charged black hole. A standard Virasoro subalgebra with corresponding central charge is constructed at a Killing horizon with Carlip's boundary conditions. For the Kerr-Newman black hole and the Kerr-Newman-AdS black hole, the density of states determined by conformal fields theory methods yields the statistical entropy which agrees with the Bekenstein-Hawking entropy.Comment: 12 pages, no figure, RevTe

    Full one-loop electroweak corrections to h0(H0,A0)H±W∓h^0(H^0,A^0) H^\pm W^\mp associated productions at e+e−e^+e^- linear colliders

    Get PDF
    We study the complete one-loop electroweak(EW) corrections to the processes of single charged Higgs boson production associated with a neutral Higgs boson(h0,H0,A0)(h^0,H^0,A^0) and a gauge boson W±W^\pm in the framework of the minimal supersymmetric standard model(MSSM). Numerical results at the SPS1aâ€Č{\rm SPS1a'} benchmark point as proposed in the SPA project, are presented for demonstration. We find that for the process e+e−→h0H±W∓e^+e^-\to h^0H^\pm W^\mp the EW relative correction can be either positive or negative and in the range of −15-15%\sim 20% in our chosen parameter space. While for the processes e+e−→H0(A0)H±W∓e^+e^-\to H^0(A^0)H^\pm W^\mp the corrections generally reduce the Born cross sections and the EW relative corrections are typically of order −10−20-10%\sim -20%.Comment: 22 pages, 20 figures, LaTex, to be appeared in PR

    The finite size effect of galaxies on the cosmic virial theorem and the pairwise peculiar velocity dispersions

    Full text link
    We discuss the effect of the finite size of galaxies on estimating small-scale relative pairwise peculiar velocity dispersions from the cosmic virial theorem (CVT). Specifically we evaluate the effect by incorporating the finite core radius rcr_c in the two-point correlation function of mass, i.e. Ορ(r)∝(r+rc)−γ\xi_\rho(r) \propto (r+r_c)^{-\gamma} and the effective gravitational force softening rsr_s on small scales. We analytically obtain the lowest-order correction term for Îł<2\gamma <2 which is in quantitative agreement with the full numerical evaluation. With a nonzero rsr_s and/or rcr_c the cosmic virial theorem is no longer limited to the case of Îł<2\gamma<2. We present accurate fitting formulae for the CVT predicted pairwise velocity dispersion for the case of Îł>2\gamma>2. Compared with the idealistic point-mass approximation (rs=rc=0r_s=r_c=0), the finite size effect can significantly reduce the small-scale velocity dispersions of galaxies at scales much larger than rsr_s and rcr_c. Even without considering the finite size of galaxies, nonzero values for rcr_c are generally expected, for instance, for cold dark matter (CDM) models with a scale-invariant primordial spectrum. For these CDM models, a reasonable force softening r_s\le 100 \hikpc would have rather tiny effect. We present the CVT predictions for the small-scale pairwise velocity dispersion in the CDM models normalized by the COBE observation. The implication of our results for confrontation of observations of galaxy pair-wise velocity dispersions and theoretical predictions of the CVT is also discussed.Comment: 18 pages. LaTeX text and 8 postcript figures. submitted to Ap

    Description of 178^{178}Hfm2^{m2} in the constrained relativistic mean field theory

    Full text link
    The properties of the ground state of 178^{178}Hf and the isomeric state 178^{178}Hfm2^{m2} are studied within the adiabatic and diabatic constrained relativistic mean field (RMF) approaches. The RMF calculations reproduce well the binding energy and the deformation for the ground state of 178^{178}Hf. Using the ground state single-particle eigenvalues obtained in the present calculation, the lowest excitation configuration with Kπ=16+K^\pi=16^+ is found to be Îœ(7/2−[514])−1(9/2+[624])1\nu(7/2^-[514])^{-1}(9/2^+[624])^{1} π(7/2+[404])−1(9/2−[514])1\pi(7/2^+[404])^{-1}(9/2^-[514])^{1}. Its excitation energy calculated by the RMF theory with time-odd fields taken into account is equal to 2.801 MeV, i.e., close to the 178^{178}Hfm2^{m2} experimental excitation energy 2.446 MeV. The self-consistent procedure accounting for the time-odd component of the meson fields is the most important aspect of the present calculation.Comment: 12 pages(preprint), 2 figures, 1 tabl

    Scaling properties of the redshift power spectrum: theoretical models

    Get PDF
    We report the results of an analysis of the redshift power spectrum PS(k,ÎŒ)P^S(k,\mu) in three typical Cold Dark Matter (CDM) cosmological models, where ÎŒ\mu is the cosine of the angle between the wave vector and the line-of-sight. Two distinct biased tracers derived from the primordial density peaks of Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are considered in addition to the pure dark matter models. Based on a large set of high resolution simulations, we have measured the redshift power spectrum for the three tracers from the linear to the nonlinear regime. We investigate the validity of the relation - guessed from linear theory - in the nonlinear regime PS(k,ÎŒ)=PR(k)[1+ÎČÎŒ2]2D(k,ÎŒ,σ12(k)), P^S(k,\mu)=P^R(k)[1+\beta\mu^2]^2D(k,\mu,\sigma_{12}(k)), where PR(k)P^R(k) is the real space power spectrum, and ÎČ\beta equals Ω00.6/bl\Omega_0^{0.6}/b_l. The damping function DD which should generally depend on kk, ÎŒ\mu, and σ12(k)\sigma_{12}(k), is found to be a function of only one variable kΌσ12(k)k\mu\sigma_{12}(k). This scaling behavior extends into the nonlinear regime, while DD can be accurately expressed as a Lorentz function - well known from linear theory - for values D>0.1D > 0.1. The difference between σ12(k)\sigma_{12}(k) and the pairwise velocity dispersion defined by the 3-D peculiar velocity of the simulations (taking r=1/kr=1/k) is about 15%. Therefore σ12(k)\sigma_{12}(k) is a good indicator of the pairwise velocity dispersion. The exact functional form of DD depends on the cosmological model and on the bias scheme. We have given an accurate fitting formula for the functional form of DD for the models studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include
    • 

    corecore