567 research outputs found

    Practical Block-wise Neural Network Architecture Generation

    Full text link
    Convolutional neural networks have gained a remarkable success in computer vision. However, most usable network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained sequentially to choose component layers. We stack the block to construct the whole auto-generated network. To accelerate the generation process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique advantages: (1) it performs competitive results in comparison to the hand-crafted state-of-the-art networks on image classification, additionally, the best network generated by BlockQNN achieves 3.54% top-1 error rate on CIFAR-10 which beats all existing auto-generate networks. (2) in the meanwhile, it offers tremendous reduction of the search space in designing networks which only spends 3 days with 32 GPUs, and (3) moreover, it has strong generalizability that the network built on CIFAR also performs well on a larger-scale ImageNet dataset.Comment: Accepted to CVPR 201

    CD-CNN: A Partially Supervised Cross-Domain Deep Learning Model for Urban Resident Recognition

    Full text link
    Driven by the wave of urbanization in recent decades, the research topic about migrant behavior analysis draws great attention from both academia and the government. Nevertheless, subject to the cost of data collection and the lack of modeling methods, most of existing studies use only questionnaire surveys with sparse samples and non-individual level statistical data to achieve coarse-grained studies of migrant behaviors. In this paper, a partially supervised cross-domain deep learning model named CD-CNN is proposed for migrant/native recognition using mobile phone signaling data as behavioral features and questionnaire survey data as incomplete labels. Specifically, CD-CNN features in decomposing the mobile data into location domain and communication domain, and adopts a joint learning framework that combines two convolutional neural networks with a feature balancing scheme. Moreover, CD-CNN employs a three-step algorithm for training, in which the co-training step is of great value to partially supervised cross-domain learning. Comparative experiments on the city Wuxi demonstrate the high predictive power of CD-CNN. Two interesting applications further highlight the ability of CD-CNN for in-depth migrant behavioral analysis.Comment: 8 pages, 5 figures, conferenc

    Secure Cloud Computing based Energy Analytics Framework in Construction of Residential Buildings

    Get PDF
    The buildings are emanating a massive producer of data amidst being massive consumers of energy resources. Electrification of a region is seen as a breakthrough in fostering the economic development of the region. However, rapid urbanization has paved the way for the construction of huge buildings which is home to a large amount of population, which directly or indirectly contributes to energy consumption. Energy analytics is a form of energy conservation, especially in residential buildings, which is generally harnessed through cutting-edge computing technologies. This work proposed a comprehensive framework with five layers that collects data from the energy monitoring edge devices to build energy analytics by processing the data in the cloud platform. In addition to this, the framework uses a security score to monitor the illegitimate access of the cloud source by tracking the registered devices. This is a robust and generic framework that has the scope to include AI-based strategies that can be orchestrated in the cloud computing platform

    Does the Dirac Cone Exist in Silicene on Metal Substrates?

    Full text link
    Absence of the Dirac cone due to a strong band hybridization is revealed to be a common feature for epitaxial silicene on metal substrates according to our first-principles calculations for silicene on Ir, Cu, Mg, Au, Pt, Al, and Ag substrates. The destroyed Dirac cone of silicene, however, can be effectively restored with linear or parabolic dispersion by intercalating alkali metal atoms between silicene and the metal substrates, offering an opportunity to study the intriguing properties of silicene without further transfer of silicene from the metal substrates
    • …
    corecore