37 research outputs found

    Radiation hardness study of BC408 plastic scintillator under 80 MeV proton beam irradiations

    Full text link
    To investigate the 1.6 GeV high-energy proton beam detector utilized in the CSNS Phase-II upgrade project, a plastic scintillator detector presents a viable option due to its superior radiation hardness. This study investigates the effects of irradiation damage on a BC408 plastic scintillator induced by 80 MeV protons, including absorption and fluorescence spectroscopy, and light yield tests of BC408 pre- and post-proton irradiation, with a focus on determining the radiation resistance threshold of BC408. The results indicate that the performance of BC408 remains unimpaired at absorbed doses up to 5.14*10^3 Gy/cm3, demonstrating its ability to absorb 1.63*10^13 p/cm3 1.6 GeV protons while maintaining stability. This suggests that BC408 could potentially be used as the 1.6 GeV high-energy proton beam detector in the CSNS Phase-II upgrade project

    Aptamer Technology and Its Applications in Bone Diseases

    No full text
    Aptamers are single-stranded nucleic acids (DNA, short RNA, or other artificial molecules) produced by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, which can be tightly and specifically combined with desired targets. As a comparable alternative to antibodies, aptamers have many advantages over traditional antibodies such as a strong chemical stability and rapid bulk production. In addition, aptamers can bind targets in various ways, and are not limited like the antigen–antibody combination. Studies have shown that aptamers have tremendous potential to diagnose and treat clinical diseases. However, only a few aptamer-based drugs have been used because of limitations of the aptamers and SELEX technology. To promote the development and applications of aptamers, we present a review of the methods optimizing the SELEX technology and modifying aptamers to boost the selection success rate and improve aptamer characteristics. In addition, we review the application of aptamers to treat bone diseases

    Neutron beam line design of a white neutron source at CSNS

    No full text
    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017

    Neutron beam line design of a white neutron source at CSNS

    No full text
    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017

    Table_4_The dynamic communities of oral microbiome in neonates.xlsx

    No full text
    The oral microbiome, associated with both oral disease and systemic disease, is in dynamic status along the whole life, and many factors including maternal microbiomes could impact the oral microbiome. While fewer studies have been conducted to study the characteristics of the oral microbiome in neonates and the associated maternal factors. Hence, we collected the microbiome of 15 mother-infant pairs across multiple body sites from birth up to 4 days postpartum and used high-throughput sequencing to characterize the microbiomes in mothers and their neonates. The oral microbiome in the neonates changed obviously during the 4 days after birth. Many bacteria originating from the vagina, skin, and environment disappeared in oral cavity over time, such as Prevotella bivia and Prevotella jejuni. Meanwhile, Staphylococcus epidermidis RP62A phage SP-beta, predominate bacterium in maternal skin microbiome and Streptococcus unclassified, main bacterium in vaginal microbiome, obviously increased in neonatal oral microbiome as time went on. Interestingly, as time progressed, the composition of the oral microbiome in the neonates was more similar to that of the milk microbiome in their mothers. Moreover, we found that the changes in the predominant bacteria in the neonates were in line with those in the neonates exposed to the environment. Together, these data described the sharp dynamics of the oral microbiome in neonates and the importance of maternal efforts in the development of the neonatal microbiome.</p
    corecore