12,613 research outputs found

    A Revisit to Top Quark Forward-Backward Asymmetry

    Full text link
    We analyze various models for the top quark forward-backward asymmetry (AFBtA^t_{FB}) at the Tevatron, using the latest CDF measurements on different AFBtA^t_{FB}s and the total cross section. The axigluon model in Ref. \cite{paul} has difficulties in explaining the large rapidity dependent asymmetry and mass dependent asymmetry simultaneously and the parameter space relevant to AFBtA^t_{FB} is ruled out by the latest dijet search at ATLAS. In contrast to Ref. \cite{cp}, we demonstrate that the large parameter space in this model with a U(1)dU(1)_d flavor symemtry is not ruled out by flavor physics. The tt-channel flavor-violating Z′Z^{\prime} \cite{hitoshi}, W′W^{\prime}\cite{waiyee} and diquark \cite{tim} models all have parameter regions that satisfy different AFBA_{FB} measurements within 1 σ\sigma. However, the heavy Z′Z^{\prime} model which can be marginally consistent with the total cross section is severely constrained by the Tevatron direct search of same-sign top quark pair. The diquark model suffers from too large total cross section and is difficult to fit the ttˉt \bar{t} invariant mass distribution. The electroweak precision constraints on the W′W' model based on Z′Z'-ZZ mixings is estimated and the result is rather weak (mZ′>450m_{Z'} > 450 GeV). Therefore, the heavy W′W^{\prime} model seems to give the best fit for all the measurements. The W′W^{\prime} model predicts the ttˉ+jt\bar{t}+j signal from tW′tW^{\prime} production and is 10%-50% of SM ttˉt\bar{t} at the 7 TeV LHC. Such t+jt+j resonance can serve as the direct test of the W′W^{\prime} model.Comment: 25 pages, 7 figures, 1 tabl

    Characterisation of dispersions within annealed HVOLF thermally sprayed AlSnCu coatings

    Get PDF
    High velocity oxy-liquid fuel (HVOLF) AlSnCu coatings are characterised following annealing for up to 5 hours at 300°C. A combination of statistical analysis of BSE images and TEM observations demonstrate the decrease in the number of sub-micron and nanoscale Sn particles with annealing, commensurate with a decrease in the coating microhardness. TEM evidence further suggests the coarsening of nanoscale Sn through a mechanism of a liquid phase migration within the Al matrix. EELS and EFTEM additionally allow the identification of the precipitation of theta'

    Eigenstates of Paraparticle Creation Operators

    Get PDF
    Eigenstates of the parabose and parafermi creation operators are constructed. In the Dirac contour representation, the parabose eigenstates correspond to the dual vectors of the parabose coherent states. In order p=2p=2, conserved-charge parabose creation operator eigenstates are also constructed. The contour forms of the associated resolutions of unity are obtained.Comment: 14 pages, LaTex file, no macros, no figure

    Electroweak Beautygenesis: From b {\to} s CP-violation to the Cosmic Baryon Asymmetry

    Get PDF
    We address the possibility that CP-violation in Bs−BˉsB_s-\bar B_s mixing may help explain the origin of the cosmic baryon asymmetry. We propose a new baryogenesis mechanism - "Electroweak Beautygenesis" - explicitly showing that these two CP-violating phenomena can be sourced by a common CP-phase. As an illustration, we work in the Two-Higgs-Doublet model. Because the relevant CP-phase is flavor off-diagonal, this mechanism is less severely constrained by null results of electric dipole moment searches than other scenarios. We show how measurements of flavor observables by the D0, CDF, and LHCb collaborations test this scenario.Comment: 4 pages, 1 figure, 1 tabl

    Quantum entropy of the Kerr black hole arising from gravitational perturbation

    Get PDF
    The quantum entropy of the Kerr black hole arising from gravitational perturbation is investigated by using Null tetrad and \'t Hooft\'s brick-wall model. It is shown that effect of the graviton\'s spins on the subleading correction is dependent of the square of the spins and the angular momentum per unit mass of the black hole, and contribution of the logarithmic term to the entropy will be positive, zero, and negative for different value of a/r+a/r_+.Comment: 8 pages, 1 figure, Latex. to appear in Phys. Rev.

    Statistical Entropy of a Stationary Dilaton Black Hole from Cardy Formula

    Get PDF
    With Carlip's boundary conditions, a standard Virasoro subalgebra with corresponding central charge for stationary dilaton black hole obtained in the low-energy effective field theory describing string is constructed at a Killing horizon. The statistical entropy of stationary dilaton black hole yielded by standard Cardy formula agree with its Bekenstein-Hawking entropy only if we take period T T of function vv as the periodicity of the Euclidean black hole. On the other hand, if we consider first-order quantum correction then the entropy contains a logarithmic term with a factor −1/2-{1/2}, which is different from Kaul and Majumdar's one, −3/2-{3/2}. We also show that the discrepancy is not just for the dilaton black hole, but for any one whose corresponding central change takes the form c12=AH8πG2πκT\frac{c}{12}= \frac{A_H}{8\pi G}\frac{2\pi}{\kappa T}.Comment: 11 pages, no figure, RevTex. Accepted for publication in Phys. Rev.

    Entropies of Rotating Charged Black Holes from Conformal Field Theory at Killing Horizons

    Get PDF
    The covariant phase technique is used to compute the constraint algebra of the stationary axisymmetric charged black hole. A standard Virasoro subalgebra with corresponding central charge is constructed at a Killing horizon with Carlip's boundary conditions. For the Kerr-Newman black hole and the Kerr-Newman-AdS black hole, the density of states determined by conformal fields theory methods yields the statistical entropy which agrees with the Bekenstein-Hawking entropy.Comment: 12 pages, no figure, RevTe

    Symmetry of Dirac Equation and Corresponding Phenomenology

    Full text link
    It has been suggested that the high symmetries in the Schr\"odinger equation with the Coulomb or harmonic oscillator potentials may remain in the corresponding relativistic Dirac equation. If the principle is correct, in the Dirac equation the potential should have a form as (1+β)2V(r){(1+\beta)\over 2}V(r) where V(r)V(r) is −e2r{-e^2\over r} for hydrogen atom and κr2\kappa r^2 for harmonic oscillator. However, in the case of hydrogen atom, by this combination the spin-orbit coupling term would not exist and it is inconsistent with the observational spectra of hydrogen atom, so that the symmetry of SO(4) must reduce into SU(2). The governing mechanisms QED and QCD which induce potential are vector-like theories, so at the leading order only vector potential exists. However, the higher order effects may cause a scalar fraction. In this work, we show that for QED, the symmetry restoration is very small and some discussions on the symmetry breaking are made. At the end, we briefly discuss the QCD case and indicate that the situation for QCD is much more complicated and interesting.Comment: 15pages, 3 figures, accepted by International Journal of Modern Physics
    • …
    corecore