275 research outputs found

    Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2_2Se3_3 thin film

    Full text link
    Electron transport properties of a topological insulator Bi2_2Se3_3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmically decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.Comment: 12 pages, 5 figure

    Continuous variable entanglement enhancement and manipulation by a sub-threshold type-II optical parametric amplifier

    Full text link
    We experimentally demonstrate that the quantum entanglement between amplitude and phase quadratures of optical modes produced from a non-degenerate optical parametric amplifier (NOPA) can be enhanced and manipulated phase-sensitively by means of another NOPA. When both NOPAs operate at de-amplification, the entanglement degree is increased at the cavity resonance of the second NOPA. When the first NOPA operates at de-amplification and the second one at amplification, the spectral features of the correlation variances are significantly changed. The experimental results are in good agreement with the theoretical expectation

    Strong spin-orbit interaction and magnetotransport in semiconductor Bi2_2O2_2Se nanoplates

    Full text link
    Semiconductor Bi2_2O2_2Se nanolayers of high crystal quality have been realized via epitaxial growth. These two-dimensional (2D) materials possess excellent electron transport properties with potential application in nanoelectronics. It is also strongly expected that the 2D Bi2_2O2_2Se nanolayers could be of an excellent material platform for developing spintronic and topological quantum devices, if the presence of strong spin-orbit interaction in the 2D materials can be experimentally demonstrated. Here, we report on experimental determination of the strength of spin-orbit interaction in Bi2_2O2_2Se nanoplates through magnetotransport measurements. The nanoplates are epitaxially grown by chemical vapor deposition and the magnetotransport measurements are performed at low temperatures. The measured magnetoconductance exhibits a crossover behavior from weak antilocalization to weak localization at low magnetic fields with increasing temperature or decreasing back gate voltage. We have analyzed this transition behavior of the magnetoconductance based on an interference theory which describes the quantum correction to the magnetoconductance of a 2D system in the presence of spin-orbit interaction. Dephasing length and spin relaxation length are extracted from the magnetoconductance measurements. Comparing to other semiconductor nanostructures, the extracted relatively short spin relaxation length of ~150 nm indicates the existence of strong spin-orbit interaction in Bi2_2O2_2Se nanolayers.Comment: 14 pages, 4 figures, and 5 pages of Supplementary Material

    Single-Molecule Real-Time Transcript Sequencing Identified Flowering Regulatory Genes in Crocus Sativus

    Get PDF
    Background: Saffron crocus (Crocus sativus) is a valuable spice with medicinal uses in gynaecopathia and nervous system diseases. Identify flowering regulatory genes plays a vital role in increasing flower numbers, thereby resulting in high saffron yield. Results: Two full length transcriptome gene sets of flowering and non-flowering saffron crocus were established separately using the single-molecule real-time (SMRT) sequencing method. A total of sixteen SMRT cells generated 22.85 GB data and 75,351 full-length saffron crocus unigenes on the PacBio RS II panel and further obtained 79,028 SSRs, 72,603 lncRNAs and 25,400 alternative splicing (AS) events. Using an Illumina RNA-seq platform, an additional fifteen corms with different flower numbers were sequenced. Many differential expression unigenes (DEGs) were screened separately between flowering and matched non-flowering top buds with cold treatment (1677), flowering top buds of 20 g corms and non-flowering top buds of 6 g corms (1086), and flowering and matched nonflowering lateral buds (267). A total of 62 putative flower-related genes that played important roles in vernalization (VRNs), gibberellins (G3OX, G2OX), photoperiod (PHYB, TEM1, PIF4), autonomous (FCA) and age (SPLs) pathways were identified and a schematic representation of the flowering gene regulatory network in saffron crocus was reported for the first time. After validation by real-time qPCR in 30 samples, two novel genes, PB.20221.2 (p = 0.004, r = 0.52) and PB.38952.1 (p = 0.023, r = 0.41), showed significantly higher expression levels in flowering plants. Tissue distribution showed specifically high expression in flower organs and time course expression analysis suggested that the transcripts increasingly accumulated during the flower development period. Conclusions: Full-length transcriptomes of flowering and non-flowering saffron crocus were obtained using a combined NGS short-read and SMRT long-read sequencing approach. This report is the first to describe the flowering gene regulatory network of saffron crocus and establishes a reference full-length transcriptome for future studies on saffron crocus and other Iridaceae plants

    Overexpression of IGF2 affects mouse weight and glycolipid metabolism and IGF2 is positively related to macrosomia

    Get PDF
    ObjectiveTo investigate the effects of insulin-like growth factor 2 (IGF2) on growth and glycolipid metabolism, as well as the underlying mechanism.MethodsA mouse model of IGF2 overexpression was constructed to measure weight gain before adulthood, to obtain the values of adult glycolipid metabolism indicators in the peripheral blood and to detect the expression of genes in the IGF2 signaling pathway in different mouse tissues. The present study also explored the independent association between the IGF2 gene and macrosomia by detecting and comparing the expression levels of IGF2 mRNA/H19 RNA in maternal peripheral blood and fetal cord blood of 26 human pregnancies.ResultsIn the mouse model, weights of the IGF2-overexpressing mice were significantly higher than those of the control mice at the age of 5-10 weeks. The glucose concentration, total cholesterol and high-density lipoprotein cholesterol (HDL-C) levels of IGF2-overexpressing mice were significantly lower than those of wild-type (WT) mice. Compared with the WT mice, the expression of H19 was significantly decreased in the pancreas and IGF1R was significantly decreased in the muscle of mice with IGF2 overexpression. The expression levels of STAT3 and AKT2 showed significant decrease in liver, muscle and increase in muscle of IGF2-overexpressing mice, respectively. GLUT2 expression showed significant increase in liver, kidney, muscle and decrease in pancreas of mice with IGF2 overexpression. This study also found that in normal mothers with the similar clinical characteristics, IGF2 expression in the maternal peripheral blood and fetal cord blood is an independent factor influencing macrosomia. ConclusionIGF2 expression was independently correlated with the occurrence of macrosomia, and overexpression of IGF2 significantly increased the weights of mice at the age of 5-10 weeks and significantly affected the values of adult glycolipid metabolism indicators, which might be the result of changes in the IGF2-IGF1R-STAT3/AKT2-GLUT2/GLUT4 pathway. These findings might suggest that IGF2 plays an important role in growth and glycolipid metabolism during both pregnancy and postnatal development
    corecore