10,088 research outputs found

    Lenard scheme for two dimensional periodic Volterra chain

    Full text link
    We prove that for compatible weakly nonlocal Hamiltonian and symplectic operators, hierarchies of infinitely many commuting local symmetries and conservation laws can be generated under some easily verified conditions no matter whether the generating Nijenhuis operators are weakly nonlocal or not. We construct a recursion operator of the two dimensional periodic Volterra chain from its Lax representation and prove that it is a Nijenhuis operator. Furthermore we show this system is a (generalised) bi-Hamiltonian system. Rather surprisingly, the product of its weakly nonlocal Hamiltonian and symplectic operators gives rise to the square of the recursion operator.Comment: Submit to Journal of Mathematical Physic

    Integrable Systems in n-dimensional Riemannian Geometry

    Full text link
    In this paper we show that if one writes down the structure equations for the evolution of a curve embedded in an (n)-dimensional Riemannian manifold with constant curvature this leads to a symplectic, a Hamiltonian and an hereditary operator. This gives us a natural connection between finite dimensional geometry, infinite dimensional geometry and integrable systems. Moreover one finds a Lax pair in (\orth{n+1}) with the vector modified Korteweg-De Vries equation (vmKDV) \vk{t}= \vk{xxx}+\fr32 ||\vk{}||^2 \vk{x} as integrability condition. We indicate that other integrable vector evolution equations can be found by using a different Ansatz on the form of the Lax pair. We obtain these results by using the {\em natural} or {\em parallel} frame and we show how this can be gauged by a generalized Hasimoto transformation to the (usual) {\em Fren{\^e}t} frame. If one chooses the curvature to be zero, as is usual in the context of integrable systems, then one loses information unless one works in the natural frame
    • …
    corecore