17,842 research outputs found

    Circular Optical Nanoantennas: An Analytical Theory

    Full text link
    An entirely analytical theory is provided for describing the resonance properties of optical nanoantennas made of a stack of homogeneous discs, i.e. circular patch nanoantennas. It consists in analytically calculating the phase accumulation of surface plasmon polaritons across the resonator and an additional contribution from the complex reflection coefficient at the antenna termination. This makes the theory self-contained with no need for fitting parameters. The very antenna resonances are then explained by a simple Fabry-Perot resonator model. Predictions are compared to rigorous simulations and show excellent agreement. Using this analytical model, circular antennas can be tuned by varying the composition of the stack

    Full one-loop electroweak corrections to h0(H0,A0)H±Wh^0(H^0,A^0) H^\pm W^\mp associated productions at e+ee^+e^- linear colliders

    Get PDF
    We study the complete one-loop electroweak(EW) corrections to the processes of single charged Higgs boson production associated with a neutral Higgs boson(h0,H0,A0)(h^0,H^0,A^0) and a gauge boson W±W^\pm in the framework of the minimal supersymmetric standard model(MSSM). Numerical results at the SPS1a{\rm SPS1a'} benchmark point as proposed in the SPA project, are presented for demonstration. We find that for the process e+eh0H±We^+e^-\to h^0H^\pm W^\mp the EW relative correction can be either positive or negative and in the range of 15-15%\sim 20% in our chosen parameter space. While for the processes e+eH0(A0)H±We^+e^-\to H^0(A^0)H^\pm W^\mp the corrections generally reduce the Born cross sections and the EW relative corrections are typically of order 1020-10%\sim -20%.Comment: 22 pages, 20 figures, LaTex, to be appeared in PR

    Kinematics of the swimming of Spiroplasma

    Full text link
    \emph{Spiroplasma} swimming is studied with a simple model based on resistive-force theory. Specifically, we consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to a universal curve that depends only on the ratio of the distance between kinks to the cell length. Simultaneously optimizing the swimming efficiency with respect to inter-kink length and pitch angle, we find that the optimal pitch angle is 35.5^\circ and the optimal inter-kink length ratio is 0.338, values in good agreement with experimental observations.Comment: 4 pages, 5 figure

    Optical generation of hybrid entangled state via entangling single-photon-added coherent state

    Full text link
    We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way.Comment: 6 pages, 2 figure

    Associated Production of a Top Quark and a Charged Higgs Boson

    Get PDF
    We compute the inclusive and differential cross sections for the associated production of a top quark along with a charged Higgs boson at hadron colliders to next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD) and in supersymmetric QCD. For small Higgs boson masses we include top quark pair production diagrams with subsequent top quark decay into a bottom quark and a charged Higgs boson. We compare the NLO differential cross sections obtained in the bottom parton picture with those for the gluon-initiated production process and find good agreement. The effects of supersymmetric loop contributions are explored. Only the corrections to the Yukawa coupling are sizable in the potential discovery region at the CERN Large Hadron Collider (LHC). All expressions and numerical results are fully differential, permitting selections on the momenta of both the top quark and the charged Higgs boson.Comment: 15 pages, 9 figures; section, figures, equations and references added, version to appear in PRD, 33 pages, 11 figure

    Asymptotic quasinormal modes of a coupled scalar field in the Gibbons-Maeda dilaton spacetime

    Full text link
    Adopting the monodromy technique devised by Motl and Neitzke, we investigate analytically the asymptotic quasinormal frequencies of a coupled scalar field in the Gibbons-Maeda dilaton spacetime. We find that it is described by eβω=[1+2cos(2ξ+12π)]eβIω[2+2cos(2ξ+12π)] e^{\beta \omega}=-[1+2\cos{(\frac{\sqrt{2\xi+1}}{2} \pi)}]-e^{-\beta_I \omega}[2+2\cos{(\frac{\sqrt{2\xi+1}}{2}\pi)}], which depends on the structure parameters of the background spacetime and on the coupling between the scalar and gravitational fields. As the parameters ξ\xi and βI\beta_I tend to zero, the real parts of the asymptotic quasinormal frequencies becomes THln3T_H\ln{3}, which is consistent with Hod's conjecture. When ξ=91/18\xi={91/18} , the formula becomes that of the Reissner-Nordstr\"{o}m spacetime.Comment: 6 pages, 1 figur

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity σ1(ω)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields HcH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio

    Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics.

    Get PDF
    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided

    Initial determination of the spins of the gluino and squarks at LHC

    Full text link
    In principle particle spins can be measured from their production cross sections once their mass is approximately known. The method works in practice because spins are quantized and cross sections depend strongly on spins. It can be used to determine, for example, the spin of the top quark. Direct application of this method to supersymmetric theories will have to overcome the challenge of measuring mass at the LHC, which could require high statistics. In this article, we propose a method of measuring the spins of the colored superpatners by combining rate information for several channels and a set of kinematical variables, without directly measuring their masses. We argue that such a method could lead to an early determination of the spin of gluino and squarks. This method can be applied to the measurement of spin of other new physics particles and more general scenarios.Comment: 23 pages, 8 figures, minor change
    corecore