185 research outputs found

    Liquefied microcapsules as dual-Mmcrocarriers for 3D+3D bottom-up tissue engineering

    Get PDF
    Cell encapsulation systems must ensure the diffusion of molecules to avoid the formation of necrotic cores. The architectural design of hydrogels, the gold standard tissue engineering strategy, is thus limited to a microsize range. To overcome such a limitation, liquefied microcapsules encapsulating cells and microparticles are proposed. Microcapsules with controlled sizes with average diameters of 608.5 ± 122.3 µm are produced at high rates by electrohydrodynamic atomization, and arginyl-glycyl-aspartic acid (RGD) domains are introduced in the multilayered membrane. While cells and microparticles interact toward the production of confined microaggregates, on the outside cell-mediated macroaggregates are formed due to the aggregation of microcapsules. The concept of simultaneous aggregation is herein termed as 3D+3D bottom-up tissue engineering. Microcapsules are cultured alone (microcapsule1 ) or on top of 2D cell beds composed of human umbilical vein endothelial cells (HUVECs) alone (microcapsule2 ) or cocultured with fibroblasts (microcapsule3 ). Microcapsules are able to support cell encapsulation shown by LiveDead, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphofenyl)-2H-tetrazolium (MTS), and dsDNA assays. Only microcapsule3 are able to form macroaggregates, as shown by F-actin immunofluorescence. The bioactive 3D system also presented alkaline phosphatase activity, thus allowing osteogenic differentiation. Upon implantation using the chick chorioallontoic membrane (CAM) model, microcapsules recruit a similar number of vessels with alike geometric parameters in comparison with CAMs supplemented with basic fibroblast growth factor (bFGF).publishe

    Prime-boost vaccination of mice and rhesus macaques with two novel adenovirus vectored COVID-19 vaccine candidates.

    Get PDF
    ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials
    • …
    corecore