76 research outputs found

    Dynamic expression of CEACAM7 in precursor lesions of gastric carcinoma and its prognostic value in combination with CEA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The significance of carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM7) expression in gastric carcinoma and precancerous lesions and its correlation with CEA expression has rarely been previously investigated.</p> <p>Methods</p> <p>CEACAM7 and CEA expression was detected by immunohistochemistry in consecutive sections of 345 subjects with gastric carcinoma and precancerous lesions. Laser confocal analysis was performed to determine CEACAM7 and CEA localization. Correlation between CEACAM7 and CEA expression with clinicopathological parameters was statistically analyzed.</p> <p>Results</p> <p>CEACAM7 expression correlated with pathologic grading (P = 0.006), Lauren's classification (P = 0.023), and CEA expression (Spearman R = 0.605, P < 0.001) in gastric carcinoma. CEACAM7 co-localized with CEA predominantly in the cytoplasmic membrane of cancerous cells. CEA expression was correlated with lymph node metastasis (P = 0.031). CEACAM7 and CEA expression increased progressively from precursor lesions to gastric carcinomas. A combination of CEACAM7 and CEA expression was determined to be an independent predictor for patients with gastric carcinoma by multivariate analysis (P = 0.001).</p> <p>Conclusions</p> <p>CEACAM7 expression correlates with tumor differentiation and CEA expression in gastric carcinoma. CEACAM7 and CEA expression may synergistically promote gastric carcinogenesis. Combined CEACAM7 and CEA expression analysis can be a useful postoperative predictor for patients with gastric carcinoma.</p

    Defect Study of MgO-CaO Material Doped with CeO 2

    Get PDF
    MgO-CaO refractories were prepared using analytical reagent chemicals of Ca(OH)2 and Mg(OH)2 as starting materials and CeO2 as dopant, then sintered at 1650°C for 3 h. The effect of CeO2 powders on the defect of MgO-CaO refractories was investigated. The sample characterizations were analyzed by the techniques of XRD and SEM. According to the results, with the addition of CeO2, the lattice constant of CaO increased, and the bulk density of the samples increased while apparent porosity decreased. The densification of MgO-CaO refractories was promoted obviously. In the sintering process, MgO grains grew faster than CaO, pores at the MgO-CaO grain boundaries decreased while pores in the MgO grains increased gradually, and no pores were observed in the CaO grains. The nature of the CeO2 promoting densification lies in the substitution and solution with CaO. Ce4+ approaches into CaO lattices, which enlarges the vacancy concentration of Ca2+ and accelerates the diffusion of Ca2+

    Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy

    Get PDF
    To make nanomedicine potentially applicable in a clinical setting, several methods have been developed to synthesize pure nanodrugs (PNDs) without using any additional inert carriers. In this work, we report a novel green, low-cost, and scalable ice-template-assisted approach which shows several unique characteristics. First, the whole process only requires adding a drug solution into an ice template and subsequent melting (or freeze-drying), allowing easy industrial mass production with low capital investment. Second, the production yield is much higher than that of the traditional reprecipitation approach. The yield of Curcumin (Cur) PNDs is over two orders (∼140 times) magnitude higher than that obtained in a typical reprecipitation preparation. By adjusting simple processing parameters, PNDs with different sizes (∼20–200 nm) can be controllably obtained. Finally, the present approach can be easily applicable for a wide range of hydrophobic therapeutic drugs without any structural modification

    Overexpressed transient receptor potential vanilloid 1 (TRPV1) in lung adenocarcinoma harbours a new opportunity for therapeutic targeting

    Get PDF
    The specific biological function of transient receptor potential vanilloid 1 (TRPV1) in pathogenesis of lung adenocarcinoma (LUAD) remains unclear. In this study, TRPV1 expression in tumor tissues, primary cells and cell lines of LUAD, as well as the mechanism mediating its hyperexpression were systematically studied. Multiple models and techniques were adopted to elucidate the relationship between TRPV1 hyperexpression and tumor recurrence and metastasis. Results showed that TRPV1 expression was increased in tumor tissues and primary tumor cells of LUAD patients. The increased expression was associated with worse overall survival outcome and raised HIF1Îą levels. TRPV1 expression in A549 and NCI-H292 cells was increased after pretreatment with cigarette smoke extract or spermine NONOate. Moreover, A549 cells with TRPV1 overexpression has enhanced tumor growth rates in subcutaneous grafted tumor models, and increased intrapulmonary metastasis after tail vein infusion in nude BALB/c nude mice. Mechanistically, TRPV1 overexpression in A549 cells promoted HIF1Îą expression and nuclear translocation by promoting CREB phosphorylation and activation of NOS1-NO pathway, ultimately leading to accelerated cell proliferation and stronger invasiveness. In addition, based on photothermal effects, CuS-TRPV1 mAb effectively targeted and induced apoptosis of TRPV1-A549 cells both in vivo and in vitro, thereby mitigating tumor growth and metastasis induced by xenotransplantation of TRPV1-A549 cells. In conclusion, TRPV1 hyperexpression in LUAD is a risk factor for tumor progression and is involved in proliferation and migration of tumor cells through activation of HIF1Îą. Our study also attempted a new strategy inhibiting the recurrence and metastasis of LUAD: by CuS-TRPV1 mAb precisely kill TRPV1 hyperexpression cells through photothermal effects

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    Get PDF
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    SAFETY ASSESSMENT OF CONTINUOUS CONCRETE GIRDER BRIDGES SUBJECTED TO RANDOM TRAFFIC LOADS CONSIDERING FLEXURAL-SHEAR COUPLED FAILURE

    No full text
    Bridges generally perform complicated mechanical behaviors under external loads, such as flexural-shear coupling, compression-bending coupling, and flexural-shear-torsion coupling. In the context of deterministic design approaches such as design codes, these complicated coupled issues are generally simplified to the safety verification of bridge components under a single mechanical state (i.e. flexural, shear, torsion). At present, the rapid development of sensor and information technologies makes it possible to collect the external loads acted on bridges and understand bridge performance under these stochastic external loads. In this manner, the reliability-based full probabilistic approach could be applied to investigate the performance of bridges over their lifetime. However, the current bridge reliability assessment incorporating realistic traffic load measurements mainly focuses on the analysis of bridge components under a single mechanical state. In this paper, a reliability-based probabilistic analytical framework of the flexural-shear performance of girder bridges under random traffic loading is established. The flexural-shear coupled failure path of bridge girders under random traffic loading is characterized for the first time, where the bivariate extreme value theory is incorporated to develop the extreme value distribution of combined flexural and shear load effects. The modified compression field theory recommended by AASHTO is employed to establish the coupled flexural-shear coupling resistances. Finally, the reliability of the flexural-shear performance of bridge girders is evaluated by solving the multivariate ultimate limit state equation. The proposed analytical framework is applied to a realistic bridge. The results show that the reliability index of the flexural-shear coupling evaluation is lower than that of the flexural or shear evaluation, which highlights the importance of the flexural-shear performance checking in the reliability assessment of bridges under random traffic loading. The proposed analytical framework could be further applied to the probabilistic assessment of bridge components subjected to combined loading mechanisms under random loadings

    Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening

    No full text
    Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a “twin intersection”-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect

    Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply

    No full text
    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism

    One-step synthesis of high-entropy diborides with hierarchy structure and high hardness via aluminum-melt reaction method

    No full text
    Two new high-entropy metal diborides (ZrTiVCr)B2 and (ZrTiVCrMn)B2 were successfully synthesized via a novel aluminum melt reaction method. The high-entropy diboride crystals have a hexagonal structure and possess high compositional uniformity. We unexpectedly found that the Mn elements could significantly change the crystal morphology of (ZrTiVCrMn)B2, resulting in a hierarchically structured nanosheet-assembled nanoplatelet shape. Benefiting from this interesting hierarchical structure and enhanced lattice distortion, the average hardness of the (ZrTiVCrMn)B2 phase is significantly enhanced to 31.44 GPa as compared to that of (ZrTiVCr)B2 for 28.82 GPa. This work will supply a new paradigm for synthesizing high-entropy metal diborides
    • …
    corecore