53 research outputs found

    Antimicrobial photodynamic inactivation as an alternative approach to inhibit the growth of Cronobacter sakazakii by fine-tuning the activity of CpxRA two-component system

    Get PDF
    Cronobacter sakazakii is an opportunistic foodborne pathogen primarily found in powdered infant formula (PIF). To date, it remains challenging to control the growth of this ubiquitous bacterium. Herein, antimicrobial photodynamic inactivation (aPDI) was first employed to inactivate C. sakazakii. Through 460 nm light irradiation coupled with hypocrellin B, the survival rate of C. sakazakii was diminished by 3~4 log. The photokilling effect was mediated by the attenuated membrane integrity, as evidenced by PI staining. Besides, scanning electron microscopy showed the deformed and aggregated cell cluster, and intracellular ROS was augmented by 2~3 folds when light doses increase. In addition to planktonic cells, the biofilm formation of C. sakazakii was also affected, showing an OD590nm decline from 0.85 to 0.25. In terms of molecular aspects, a two-component system called CpxRA, along with their target genes, was deregulated during illumination. Using the knock-out strain of ΔCpxA, the bacterial viability was reduced by 2 log under aPDI, a wider gap than the wildtype strain. Based on the promoted expression of CpxR and OmpC, aPDI is likely to play its part through attenuating the function of CpxRA-OmpC pathway. Finally, the aPDI system was applied to PIF, and C. sakazakii was inactivated under various desiccated or heated storage conditions. Collectively, aPDI serves as an alternative approach to decontaminate C. sakazakii, providing a new strategy to reduce the health risks caused by this prevalent foodborne pathogen

    Using metal-ligand interactions to access biomimetic supramolecular polymers with adaptive and superb mechanical properties

    Get PDF
    Natural Science Foundation of China [21074103]; Fundamental Research Funds for the Central Universities [2010121018]; Scientific Research Foundation for Returned ScholarsThe development of polymer materials that exhibit excellent mechanical properties and can respond to environmental stimuli is of great scientific and commercial interest. In this work, we report a series of biomimetic supramolecular polymers using a ligand macromolecule carrying multiple tridentate ligand 2,6-bis(1,2,3-triazol-4-yl)pyridine (BTP) units synthesized via CuAAC in the polymer backbone together with transition and/or lanthanide metal salts. The metal-ligand complexes phase separate from soft linker segments, acting as physical crosslinking points in the materials. The metallo-supramolecular films exhibit superb mechanical properties, i.e., high tensile strength (up to 18 MPa), large strain at break (>1000%) and exceptionally high toughness (up to 70 MPa), which are much higher than those of the ligand macromolecule and are tunable by adjusting the stoichiometric ratio of Zn2+ to Eu3+ and the stoichiometry of metal ion to ligand. The metal-ligand hard phase domains are demonstrated to be thermally stable but mechanically labile, similar to the behaviors of covalent mechanophores. The thermal stability and mechanical responsiveness are also dependent on the compositions of metal ions. The disruption of the hard phase domains and the dissociation of metal-ligand complexes under stretching are similar to the unfolding of modular domains in modular biomacromolecules and are responsible for the superb mechanical properties. In addition, the biomimetic metallo-supramolecular materials display promising responsive properties to UV irradiation and chemicals. These well designed, created and characterized robust structures will inspire further accurate tailoring of biomimetic responsive materials at the molecular level and/or nanoscale

    The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform

    Get PDF
    Objective: Recent non-invasive prenatal testing (NIPT) technologies are based on next-generation sequencing (NGS). NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton. Methods: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal & Child Health Care Hospital (Xiamen, Fujian, China). Adapter-ligated DNA libraries were analyzed by the Ion Proton??? System (Life Technologies, Grand Island, NY, USA) with an average 0.3 ?? sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection. Results: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21. Conclusion: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.open2

    Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent

    No full text
    Abstract In this paper, we study the following critical system with fractional Laplacian: {(−Δ)su+λ1u=μ1|u|2∗−2u+αγ2∗|u|α−2u|v|βin Ω,(−Δ)sv+λ2v=μ2|v|2∗−2v+βγ2∗|u|α|v|β−2vin Ω,u=v=0in RN∖Ω, {(Δ)su+λ1u=μ1u22u+αγ2uα2uvβin Ω,(Δ)sv+λ2v=μ2v22v+βγ2uαvβ2vin Ω,u=v=0in RNΩ,\textstyle\begin{cases} (-\Delta)^{s}u+\lambda_{1}u=\mu_{1}|u|^{2^{\ast}-2}u+\frac{\alpha \gamma}{2^{\ast}}|u|^{\alpha-2}u|v|^{\beta} & \text{in } \Omega, \\ (-\Delta)^{s}v+\lambda_{2}v= \mu_{2}|v|^{2^{\ast}-2}v+\frac{\beta \gamma}{2^{\ast}}|u|^{\alpha}|v|^{\beta-2}v & \text{in } \Omega, \\ u=v=0 & \text{in } \mathbb{R}^{N}\setminus\Omega, \end{cases} where (−Δ)s (Δ)s(-\Delta)^{s} is the fractional Laplacian, 00 μ1,μ2>0\mu_{1},\mu_{2}>0, 2∗=2NN−2s 2=2NN2s2^{\ast}=\frac{2N}{N-2s} is a fractional critical Sobolev exponent, N>2s N>2sN>2s, 1−λ1,s(Ω) λ1,λ2>λ1,s(Ω)\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega), λ1,s(Ω) λ1,s(Ω)\lambda_{1,s}(\Omega) is the first eigenvalue of the non-local operator (−Δ)s (Δ)s(-\Delta)^{s} with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all γ>0 γ>0\gamma>0. Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when γ→0 γ0\gamma\rightarrow0
    corecore