169 research outputs found

    Pantheism and Science in Victorian Britain

    Get PDF
    In discussing the relationship between science and religion during the Victorian period, historians have paid much attention to Christian monotheism, deism, spiritualism, materialism, agnosticism, and atheism; however, pantheism has received little attention. Yet the Victorians published thousands of discussions of pantheism, which shows that pantheism was a significant religious position in the Victorian ferment of faith. Through exploring these writings, this dissertation shows that there was considerable interest in pantheism among Victorian thinkers concerning the viability of pantheism and its relationship with science. The first two chapters present a general account of pantheism in Victorian Britain, with eight Victorian advocates of pantheism being identified and their lives and philosophies being introduced. These people are John Hunt, Alfred Barratt, James Martineau, Thomas Elford Poynting, James Hinton, James Allanson Picton, Charles Bray, and Constance Plumptre. As science became the dominant intellectual authority in Victorian Britain, many Victorian religious thinkers made use of it in support of their religious doctrines. The next three chapters show that advocates of pantheism likewise drew heavily on contemporary scientific theories in advancing and defending their pantheistic views of God, the world, humans, ethics, science and religion, and the future of religion. They were strongly attracted to theories that implied a unified and creative universe, such as the correlation of forces, the idea of living matter, and the evolutionary theory of life. Scientific practitioners John Tyndall and Thomas Huxley and evolutionary philosopher Herbert Spencer were their most popular scientific sources. In consequence of pantheistic uses of science, these writers and their theories were sometimes criticised for being pantheistic, and pantheism was often treated as a science-related threat by Christian critics. This dissertation demonstrates that pantheism was more widely accepted in Victorian Britain than has been previously recognised and that pantheistic thinkers drew extensively on science

    Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices

    Full text link
    The stabilization of one-dimensional solitons by a nonlinear lattice against the critical collapse in the focusing quintic medium is a challenging issue. We demonstrate that this purpose can be achieved by combining a nonlinearlatticeandsaturationofthequinticnonlinearity. Thesystemsupportsthreespeciesofsolitons, namely, fundamental (even-parity) ones and dipole (odd-parity) modes of on- and off-site-centered types. Very narrow fundamental solitons are found in an approximate analytical form, and systematic results for very broad unstable and moderately broad partly stable solitons, including their existence and stability areas, are produced by means of numerical methods. Stability regions of the solitons are identified by means of systematic simulations. The stability of all the soliton species obeys the Vakhitov-Kolokolov criterion.Comment: 8 pages,8 figures, Chaos (2018), to be publishe

    Experimental and analytical study on heat generation characteristics of a lithium-ion power battery

    Get PDF
    This document is the Accepted Manuscript version of the following article: Yongqi Xie, Shang Shi, Jincheng Tang, Hongwei Wu, and Jianzu Yu, ‘Experimental and analytical study on heat generation characteristics of a lithium-ion power battery’, International Journal of Heat and Mass Transfer, Vol. 122: 884-894, July 2018. Under embargo until 20 February 2019. The final, definitive version is available online via: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.038A combined experimental and analytical study has been performed to investigate the transient heat generation characteristics of a lithium-ion power battery in the present work. Experimental apparatus is newly built and the investigations on the charge/discharge characteristics and temperature rise behavior are carried out at ambient temperatures of 28 °C, 35 °C and 42 °C over the period of 1 C, 2 C, 3 C and 4 C rates. The thermal conductivity of a single battery cell is experimentally measured to be 5.22 W/(m K). A new transient model of heat generation rate based on the battery air cooling system is proposed. Comparison of the battery temperature between simulated results and experimental data is performed and good agreement is achieved. The impacts of the ambient temperature and charge/discharge rate on the heat generation rate are further analyzed. It is found that both ambient temperature and charge/discharge rate have significant influences on the voltage change and temperature rise as well as the heat generation rate. During charge/discharge process, the higher the current rate, the higher the heat generation rate. The effect of the ambient temperature on the heat generation demonstrates a remarkable difference at different charge states.Peer reviewe

    Unabridged phase diagram for single-phased FeSexTe1-x thin films

    Get PDF
    A complete phase diagram and its corresponding physical properties are essential prerequisites to understand the underlying mechanism of iron based superconductivity. For the structurally simplest 11 (FeSeTe) system, earlier attempts using bulk samples have not been able to do so due to the fabrication difficulties. Here, thin FeSexTe1-x films with the Se content covering the full range were fabricated by using pulsed laser deposition method. Crystal structure analysis shows that all films retain the tetragonal structure in room temperature. Significantly, the highest superconducting transition temperature (TC = 20 K) occurs in the newly discovered domain, 0.6 - 0.8. The single-phased superconducting dome for the full Se doping range is the first of its kind in iron chalcogenide superconductors. Our results present a new avenue to explore novel physics as well as to optimize superconductors

    Robust Mid-Pass Filtering Graph Convolutional Networks

    Full text link
    Graph convolutional networks (GCNs) are currently the most promising paradigm for dealing with graph-structure data, while recent studies have also shown that GCNs are vulnerable to adversarial attacks. Thus developing GCN models that are robust to such attacks become a hot research topic. However, the structural purification learning-based or robustness constraints-based defense GCN methods are usually designed for specific data or attacks, and introduce additional objective that is not for classification. Extra training overhead is also required in their design. To address these challenges, we conduct in-depth explorations on mid-frequency signals on graphs and propose a simple yet effective Mid-pass filter GCN (Mid-GCN). Theoretical analyses guarantee the robustness of signals through the mid-pass filter, and we also shed light on the properties of different frequency signals under adversarial attacks. Extensive experiments on six benchmark graph data further verify the effectiveness of our designed Mid-GCN in node classification accuracy compared to state-of-the-art GCNs under various adversarial attack strategies.Comment: Accepted by WWW'2

    Investigation of Electron-Phonon Coupling in Epitaxial Silicene by In-situ Raman Spectroscopy

    Full text link
    In this letter, we report that the special coupling between Dirac fermion and lattice vibrations, in other words, electron-phonon coupling (EPC), in silicene layers on Ag(111) surface was probed by an in-situ Raman spectroscopy. We find the EPC is significantly modulated due to tensile strain, which results from the lattice mismatch between silicene and the substrate, and the charge doping from the substrate. The special phonon modes corresponding to two-dimensional electron gas scattering at edge sites in the silicene were identified. Detecting relationship between EPC and Dirac fermion through the Raman scattering will provide a direct route to investigate the exotic property in buckled two-dimensional honeycomb materials.Comment: 15 pages, 4 figure
    • …
    corecore