13 research outputs found

    Least-squares means and standard errors for reproduction traits of different genotypes in SNPs.

    No full text
    <p>The least square means within a row lacking a common lowercase superscript differ significantly (<i>P</i><0.05).</p><p>The numbers in the brackets are the chicken individuals of respective genotypes.</p><p>Least-squares means and standard errors for reproduction traits of different genotypes in SNPs.</p

    Association of diplotypes of chicken <i>BMP15</i> gene with the reproductive traits.

    No full text
    <p><sup>1</sup> Bold values represent the advantageous diplotypes</p><p><sup>2</sup> Italic values represent the negative diplotypes.</p><p>** <i>P</i> ≤ 0.01</p><p>Association of diplotypes of chicken <i>BMP15</i> gene with the reproductive traits.</p

    Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs

    No full text
    The severe cytotoxicity of cancer chemotherapy drugs limits their clinical applications. Various protein-based nanoparticles with good biocompatibility have been developed for chemotherapy drug delivery in hope of reducing drugs’ side effects. Sericin, a natural protein from silk, has no immunogenicity and possesses diverse bioactivities that have prompted sericin’s application studies. However, the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy have not been fully explored. Here we report the successful fabrication and characterization of <u>f</u>ol<u>a</u>te-conjugated <u>s</u>erici<u>n</u> nanoparticles with cancer-targeting capability for pH-responsive release of <u>d</u>oxorubicin (these nanoparticles are termed “FA-SND”). DOX is covalently linked to sericin through pH-sensitive hydrazone bonds that render a pH-triggered release property. The hydrophobicity of DOX and the hydrophilicity of sericin promote the self-assembly of sericin-DOX (SND) nanoconjugates. Folate (FA) is then covalently grafted to SND nanoconjugates as a binding unit for actively targeting cancer cells that overexpress folate receptors. Our characterization study shows that FA-SND nanoparticles exhibit negative surface charges that would reduce nonspecific clearance by circulation. These nanoparticles possess good cytotoxicity and hemocompatibiliy. Acidic environment (pH 5.0) triggers effective DOX release from FA-SND, 5-fold higher than does a neutral condition (pH 7.4). Further, FA-SND nanoparticles specifically target folate-receptor-rich KB cells, and endocytosed into lysosomes, an acidic organelle. The acidic microenvironment of lysosomes promotes a rapid release of DOX to nuclei, producing cancer specific chemo-cytotoxicity. Thus, FA-mediated cancer targeting and lysosomal-acidity promoting DOX release, two sequentially-occurring cellular events triggered by the designed components of FA-SND, form the basis for FA-SND to achieve its localized and intracellular chemo-cytotoxicity. Together, this study suggests that these FA-SND nanoparticles may be a potentially effective carrier particularly useful for delivering hydrophobic chemotherapeutic agents for treating cancers with high-level expression of folate receptors
    corecore