268 research outputs found

    Current insights into genome-based personalized nutrition technology: a patent review

    Get PDF
    Unlike general nutritional ranges that meet the nutritional needs essential for maintaining the life of an entire population, personalized nutrition is characterised by maintaining health through providing customized nutrition according to individuals’ lifestyles or genetic characteristics. The development of technology and services for personalized nutrition is increasing, owing to the acquisition of knowledge about the differences in nutritional requirements according to the diversity of individuals and an increase in health interest. Regarding genetics, technology is being developed to distinguish the various characteristics of individuals and provide customized nutrition. Therefore, to understand the current state of personalized nutrition technology, understanding genomics is necessary to acquire information on nutrition research based on genomics. We reviewed patents related to personalized nutrition-targeting genomics and examined their mechanisms of action. Using the patent database, we searched 694 patents on nutritional genomics and extracted 561 highly relevant valid data points. Furthermore, an in-depth review was conducted by selecting core patents related to genome-based personalized nutrition technology. A marked increase was observed in personalized nutrition technologies using methods such as genetic scoring and disease-specific dietary recommendations

    Boehmeria nivea

    Full text link

    Poly- γ

    Full text link

    Antidiabetic Effect of Morinda citrifolia

    Get PDF
    Antidiabetic effects of Morinda citrifolia (aka Noni) fermented by Cheonggukjang (fast-fermented soybean paste) were evaluated using a T2DM (type 2 diabetes mellitus) murine model. Six-week-old KK-Ay/TaJcl mice were randomly divided into four groups: (1) the diabetic control (DC) group, provided with a normal mouse diet; (2) the positive control (PC) group, provided with a functional health food diet; (3) the M. citrifolia (MC) group, provided with an MC-based diet; (4) the fermented M. citrifolia (FMC) group, provided with an FMC-based diet. Over a testing period of 90 days, food and water intake decreased significantly in the FMC and PC groups compared with the DC group. Blood glucose levels in the FMC group were 211.60–252.20 mg/dL after 90 days, while those in the control group were over 400 mg/dL after 20 days. In addition, FMC supplementation reduced glycosylated hemoglobin (HbA1c) levels, enhanced insulin sensitivity, and significantly decreased serum triglycerides and low-density lipoprotein (LDL) cholesterol. Furthermore, a fermented M. citrifolia 70% ethanolic extract (FMCE) activated peroxisome proliferator-activated receptor-(PPAR-) γ and stimulated glucose uptake via stimulation of AMP-activated protein kinase (AMPK) in cultured C2C12 cells. These results suggest that FMC can be employed as a functional health food for T2DM management

    Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death

    Get PDF
    Background: Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results: Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion: These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development

    Comparison of the effectiveness of extensor muscle strengthening exercise by itself, exercise with polydeoxyribonucleotide injection, and exercise with extracorporeal shockwave therapy in lateral epicondylitis: a randomized controlled trial

    Get PDF
    Background Extensor muscle strengthening exercises with counterforce braces (EX) is a conventional conservative treatment for lateral epicondylitis (LE) of the elbow. In addition, polydeoxyribonucleotide (PDRN) or extracorporeal shockwave therapy (ESWT) has been recently used for LE. Methods Sixty-three patients with chronic LE participated in this study and randomly allocated in three groups (G1: EX, G2: EX+PDRN injection, and G3: EX+ESWT). All of the three groups were taught to perform EX at the first out-patient department (OPD) visit. Group 2 was injected with 3 mL PDRN (5.625 mg/3 mL), while group 3 received ESWT at the first OPD visit. Visual analog scale pain score, Mayo elbow performance score (MEPS), and ultrasonographic examination were checked before, 6 weeks, and 12 weeks after the treatments. Results Overall functional scores and ultrasonographic findings in all three groups improved after treatment. The mean MEPS in group 2 improved more than groups 1 and 3 at 6 weeks (G1, 56.9>62.4; G2, 54.3>65.0; G3, 55.7>62.6), and more than group 1 at 12 weeks (G1, 56.9>67.9; G2, 54.3>73.6). The mean common extensor tendon depth (CETD) on ultrasonography in group 2 increased more than groups 1 and 3 at 6 and 12 weeks (6 weeks: G1, 0.385>0.386; G2, 0.332>0.392; G3, 0.334>0.357; 12 weeks: G1, 0.385>0.409; G2, 0.332>0.438; G3, 0.334>0.405 [cm]). Conclusions PDRN injections combined with EX exhibited a greater improvement in mean MEPS and mean CETD compared to EX only or EX combined with ESWT for LE within the 12 weeks follow-up

    Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice

    Get PDF
    Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery

    The impact of dose of the angiotensin-receptor blocker valsartan on the post-myocardial infarction ventricular remodeling: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin-converting enzyme inhibitors and the angiotensin-receptor blocker valsartan ameliorate ventricular remodeling after myocardial infarction (MI). Based on previous clinical trials, a maximum clinical dose is recommended in practical guidelines. Yet, has not been clearly demonstrated whether the recommended dose is more efficacious compared to the lower dose that is commonly used in clinical practice.</p> <p>Method/Design</p> <p>Valsartan in post-MI remodeling (VALID) is a randomized, open-label, single-blinded multicenter study designed to compare the efficacy of different clinical dose of valsartan on the post-MI ventricular remodeling. This study also aims to assess neurohormone change and clinical parameters of patients during the post-infarct period. A total of 1116 patients with left ventricular dysfunction following the first episode of acute ST-elevation MI are to be enrolled and randomized to a maximal tolerable dose (up to 320 mg/day) or usual dose (80 mg/day) of valsartan for 12 months in 2:1 ratio. Echocardiographic analysis for quantifying post-MI ventricular remodeling is to be conducted in central core laboratory. Clinical assessment and laboratory test are performed at fixed times.</p> <p>Discussion</p> <p>VALID is a multicenter collaborative study to evaluate the impact of dose of valsartan on the post-MI ventricular remodeling. The results of the study provide information about optimal dosing of the drug in the management of patients after MI. The results will be available by 2012.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01340326">NCT01340326</a></p
    corecore