3,069 research outputs found

    Identification of a New γ\gamma-ray-emitting narrow-line Seyfert 1 Galaxy, at Redshift ∼1\sim1

    Full text link
    We report on the identification of a new γ\gamma-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J122222.55+041315.7, which increases the number of known objects of this remarkable but rare type of active galactic nuclei (AGN) to seven. Its optical spectrum, obtained in the Sloan Digital Sky Survey-Baryon Oscillation Spectroscopic Survey, reveals a broad H β\beta emission line with a width (FWHM) of 1734±\pm104 km s−1^{-1}. This, along with strong optical Fe II multiplets [R4570=0.9R_{4570}=0.9] and a weak [O III] λ5007\lambda 5007 emission line, makes the object a typical NLS1. On the other hand, the source exhibits a high radio brightness temperature, rapid infrared variability, and a flat X-ray spectrum extending up to ∼\sim200 keV. It is associated with a luminous γ\gamma-ray source detected significantly with {\it Fermi}/LAT. Correlated variability with other wavebands has not yet been tested. The spectral energy distribution can be well modelled by a one-zone leptonic jet model. This new member is by far the most distant γ\gamma-ray-emitting NLS1, at a redshift of z=0.966z=0.966.Comment: 5 pages, published on MNRA

    Comparison of Efficacy and Safety Between First and Second Generation Drug-Eluting Stents in Patients with Stable Coronary Artery Disease: A Single-Center Retrospective Study

    Get PDF
    Background: Lots of trials demonstrate that second-generation drug-eluting stents (G2-DES), with their improved properties, offer significantly superior efficacy and safety profiles compared to first generation DES (G1-DES) for patients with coronary artery disease (CAD) receiving percutaneous coronary intervention (PCI). This study aimed to verify the advantage of G2-DES over G1-DES in Chinese patients with stable CAD (SCAD). Methods: For this retrospective observational analysis, 2709 SCAD patients with either G1-DES (n = 863) or G2-DES (n = 1846) were enrolled consecutively throughout 2013. Propensity score matching (PSM) was applied to control differing baseline factors. Two-year outcomes, including major adverse coronary events as well as individual events, including target vessel-related myocardial infarction, target lesion revascularization (TLR), target vessel revascularization, and cardiogenic death were evaluated. Results: The incidence of revascularization between G1- and G2-DES showed a trend of significant difference with a threshold P - value (8.6% vs. 6.7%, χ2 = 2.995, P = 0.084). G2-DES significantly improved TLR-free survival compared to G1-DES (96.6% vs. 97.9%, P = 0.049) and revascularization-free survival curve showed a trend of improvement of G2-DES (92.0% vs. 93.8%, P = 0.082). These differences diminished after PSM. Multivariate Cox proportional hazard regression analysis showed a trend for G1-associated increase in revascularization (hazard ratio: 1.28, 95% confidence interval: 0.95-1.72, P = 0.099) while no significance was found after PSM. Other endpoints showed no significant differences after multivariate adjustment regardless of PSM. Conclusions: G1-DES showed the same safety as G2-DES in this large Chinese cohort of real-world patients. However, G2-DES improved TLR-free survival of SCAD patients 2 years after PCI. The advantage was influenced by baseline clinical factors. G1-DES was associated with a trend of increase in revascularization risk and was not an independent predictor of worse medium-term prognosis compared with G2-DES

    New symmetries for the Ablowitz-Ladik hierarchies

    Full text link
    In the letter we give new symmetries for the isospectral and non-isospectral Ablowitz-Ladik hierarchies by means of the zero curvature representations of evolution equations related to the Ablowitz-Ladik spectral problem. Lie algebras constructed by symmetries are further obtained. We also discuss the relations between the recursion operator and isospectral and non-isospectral flows. Our method can be generalized to other systems to construct symmetries for non-isospectral equations.Comment: 11 page

    Ba6RE2Ti4O17 (RE= Nd, Sm,Gd, Dy-Yb): A family of quasi-two-dimensional triangular lattice magnets

    Full text link
    Rare-earth-based triangular-lattice magnets provide the fertile ground to explore the exotic quantum magnetic state. Herein, we report a new family of RE-based triangular-lattice magnets Ba6RE2Ti4O17(RE= rare earth ions) crystallized into the hexagonal structure with space group of P63 mmc, where magnetic rare earth ions form an ideal triangular lattice within the ab-plane and stack in an AA -type fashion along the c-axis. The low-temperature magnetic susceptibility results reveal all the serial compounds have the dominant antiferromagnetic interactions and an absence of magnetic ordering down to 1.8 K. The magnetization and electron spin resonance results indicate distinct magnetic anisotropy for the compounds with different RE ions. Moreover, Ba6Nd2Ti4O17 single crystal is successfully grown and it exhibits strong Ising like anisotropy with magnetic easy-axis perpendicular to the triangle-lattice plane, being a candidate to explore quantum spin liquid state with dominant Ising-type interaction.Comment: 18 pages, 8 figure

    Intranasal immunization with a helper-dependent adenoviral vector expressing the codon-optimized fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in BALB/c mice

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract. Currently, there is no clinically approved vaccine against RSV infection. Recent studies have shown that helper-dependent adenoviral (HDAd) vectors may represent effective and safe vaccine vectors. However, viral challenge has not been investigated following mucosal vaccination with HDAd vector vaccines. METHODS: To explore the role played by HDAd as an intranasally administered RSV vaccine vector, we constructed a HDAd vector encoding the codon optimized fusion glycoprotein (Fsyn) of RSV, designated HDAd-Fsyn, and delivered intranasally HDAd-Fsyn to mice. RESULTS: RSV-specific humoral and cellular immune responses were generated in BALB/c mice, and serum IgG with neutralizing activity was significantly elevated after a homologous boost with intranasal (i.n.) application of HDAd-Fsyn. Humoral immune responses could be measured even 14 weeks after a single immunization. Immunization with i.n. HDAd-Fsyn led to effective protection against RSV infection on challenge. CONCLUSION: The results indicate that HDAd-Fsyn can induce powerful systemic immunity against subsequent i.n. RSV challenge in a mouse model and is a promising candidate vaccine against RSV infection
    • …
    corecore