2,787 research outputs found

    Assessing genetic diversity and population structure of Salix viminalis across Ergun and West Liao basin

    Get PDF
    L. is an important shrub that has potential for use as a bioenergy crop, for phytoremediation of heavy metal contaminated soil and sewage sludge treatment. It is mainly distributed in the northeast of China, but the species has not yet been used a resource here. We examined the genetic diversity and population structure of populations from the Ergun basin and West Liao basin using 20 microsatellite markers. A high level of genetic diversity (Nâ=â16.45, Hâ=â0.742) was detected for , and populations from the Ergun basin exhibited higher genetic diversity and private alleles numbers than the West Liao basin. The 12 populations could be divided into two clusters by both Bayesian analysis and UPGMA clustering which were consistent with the populations derived from the two basins. Moderate population differentiation (Fâ=â0.076) was shown in , and AMOVA analysis confirmed that most of the genetic variation (86.13%) was attributed to individual differences within populations, while 11.49% was attributed to differences between basins and 2.38% to differences within each basin. Significant correlations of F/(1âF) with log (geographic distance) among 12 populations (râ=â0.634, pâ<â0.00) and 10 populations within the Ergun basin (râ=â0.482, pâ=â0.0002) indicated that geographical distance was the principal factor influencing genetic structure. As most of genetic variation exist within populations, so protection measures should be focused on populations with higher genetic diversity and unique alleles, such as Tuli, Mordaga downstream, Zhadun1 and Genhe.Salix viminalisaeS. viminalisSTS. viminalisSTS

    Bioinformatics and system biology approach to identify the influences among COVID-19, influenza, and HIV on the regulation of gene expression

    Get PDF
    BackgroundCoronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses.MethodsSequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes.ResultsThe analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified.ConclusionThis research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza

    Diosgenin Suppresses Cholangiocarcinoma Cells Via Inducing Cell Cycle Arrest And Mitochondria-Mediated Apoptosis.

    Get PDF
    Purpose(#br)Diosgenin (DSG) is the precursor of steroid hormones and plays a crucial part in the proliferation of various carcinomas including human colorectal cancer and gastric carcinoma. Nevertheless, its specific features and mechanisms in human cholangiocarcinoma (CCA) remain unknown.(#br)Methods(#br)MTS assay, colony-forming assay, and EdU assay were performed to determine the role of DSG on the progression of human CCA cells. The distributions of cell cycle, the ratio of apoptosis, and the mitochondrial membrane potential (ΔΨm) were studied by flow cytometry (FCM). AO/EB and Hoechst 33258 staining were performed to observe the morphological features of cell apoptosis. TEM was performed to observe the ultrastructures of QBC939 and HuCCT1 cells. The mRNA and protein expression of mitochondrial apoptotic pathway and GSK3β/β-catenin pathway were further confirmed by qPCR and Western blotting. The xenograft tumor model of HuCCT1 cells was built. Immunohistochemistry of tumor tissues was performed.(#br)Results(#br)Our results indicated that DSG inhibited the progression of six CCA cell lines. In vivo tumor studies also indicated that DSG significantly inhibited tumor growth in xenografts in nude mice. The expression of mitosis-promoting factor cyclinB1 was decreased along with the elevating level of cell cycle inhibitor p21, resulting in arresting CCA cell cycles at G2/M phase. Furthermore, DSG induced apoptosis with the increased expressions of cytosol cytochrome C, cleaved-caspase-3, cleaved-PARP1 and the Bax/Bcl-2 ratio. Mechanistically, our study showed that GSK3β/β-catenin pathway was involved in the apoptosis of CCA cells. Thus, DSG might provide a new clue for the drug therapy of CCA.(#br)Conclusion(#br)In our data, DSG was found to have efficient antitumor potential of human CCA cells in vitro and in vivo

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+e−e^+e^- collider. In this method, the doubly tagged ψ(3770)→D0D0‾\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb−120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to investigate an association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of lung cancer in a Korean population.</p> <p>Methods</p> <p>We conducted a large-scale, case-control study involving 3938 patients with newly diagnosed lung cancer and 1700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. Statistical significance was estimated by logistic regression analysis.</p> <p>Results</p> <p>The MTHFR C677T frequencies of CC, CT, and TT genotypes were 34.5%, 48.5%, and 17% among lung cancer patients, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677CT and TT genotype showed a weak protection against lung cancer compared with the homozygous CC genotype, although the results did not reach statistical significance. The age- and gender-adjusted odds ratio (OR) of overall lung cancer was 0.90 (95% confidence interval (CI), 0.77-1.04) for MTHFR 677 CT and 0.88 (95% CI, 0.71-1.07) for MTHFR 677TT. However, after stratification analysis by histological type, the MTHFR 677CT genotype showed a significantly decreased risk for squamous cell carcinoma (age- and gender-adjusted OR, 0.78; 95% CI, 0.64-0.96). The combination of 677 TT homozygous with 677 CT heterozygous also appeared to have a protection effect on the risk of squamous cell carcinoma. We observed no significant interaction between the MTHFR C677T polymorphism and age and gender or smoking habit.</p> <p>Conclusions</p> <p>This is the first reported study focusing on the association between MTHFR C677T polymorphisms and the risk of lung cancer in a Korean population. The T allele was found to provide a weak protective association with lung squamous cell carcinoma.</p
    • …
    corecore