1,450 research outputs found

    Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts

    Get PDF
    The thermochemical reduction of silica to silicon using chemical reductants requires high temperature and has a high activation energy, which depends on the melting temperature of the reductant. The addition of bi-functional molten salts with a low melting temperature may reduce the required energy, and several examples using molten salts have been demonstrated. Here we study the mechanism of reduction of silica in the presence of aluminum metal reductant and aluminum chloride as bi-functional molten salts. An aluminum-aluminum chloride complex plays a key role in the reduction mechanism, reacting with the oxygen of the silica surfaces to lower the heat of reaction and subsequently survives a recycling step in the reaction. This experimentally and theoretically validated reaction mechanism may open a new pathway using bi-functional molten salts. Furthermore, the as-synthesized hollow porous silicon microsphere anodes show structural durability on cycling in both half/full cell tests, attributed to the high volume-accommodating ability

    Simultaneous Total Occlusion of Multiple Distal Coronary Arteries in Acute Myocardial Infarction

    Get PDF
    Simultaneous multiple coronary artery thrombosis is a rare finding in ST segment elevation myocardial infarction (STEMI). We report a case of myocardial infarction with multiple ST segment elevation on the electrocardiography and total occlusions of the distal left anterior descending artery (dLAD), as well as of the second and third obtuse marginal artery on emergency coronary angiography. Thrombus aspiration was performed at dLAD and systemic glycoprotein IIb/IIIa inhibitor was used successfully. In patients with STEMI, multiple coronary thromboses are unusual and associated with patient fatality. However, assertive thrombus aspiration and antiplatelet therapy could be effective in STEMI patients with multiple distal coronary artery occlusions

    Perfusion parameters as potential imaging biomarkers for the early prediction of radiotherapy response in a rat tumor model

    Get PDF
    PURPOSEWe aimed to compare various tumor-related radiologic morphometric changes and computed tomography (CT) perfusion parameters before and after treatment, and to determine the optimal imaging assessment technique for the prediction of early response in a rat tumor model treated with radiotherapy.METHODSAmong paired tumors of FN13762 murine breast cancer cells implanted bilaterally in the necks of eight Fischer rats, tumors on the right side were treated with a single 20 Gy dose of radiotherapy. Perfusion CT studies were performed on day 0 before radiotherapy, and on days 1 and 5 after radiotherapy. Variables based on the size, including the longest diameter, tumor area, and volume, were measured. Quantitative perfusion analysis was performed for the whole tumor volume and permeabilities and blood volumes (BVs) were obtained. The area under the curve (AUC) difference in the histograms of perfusion parameters and texture analyses of uniformity and entropy were quantified. Apoptotic cell density was measured on pathology specimens immediately after perfusion imaging on day 5.RESULTSOn day 1 after radiotherapy, differences in size between the irradiated and nonirradiated tumors were not significant. In terms of percent changes in the uniformity of permeabilities between tumors before irradiation and on day 1 after radiotherapy, the changes were significantly higher in the irradiated tumors than in the nonirradiated tumors (0.085 [−0.417, 0.331] vs. −0.131 [−0.536, 0.261], respectively; P = 0.042). The differences in AUCs of the histogram of voxel-by-voxel vascular permeability and BV in tumors between day 0 and day 1 were significantly higher in treated tumors compared with the control group (permeability, 21.4 [−2.2, 37.5] vs. 9.5 [−8.9, 33.8], respectively, P = 0.030; BV, 52.9 [−6186.0, 419.2] vs. 11.9 [−198.3, 346.7], respectively, P = 0.049). Apoptotic cell density showed a significantly positive correlation with the AUC difference of BV, the percent change of uniformity in permeability and BV (r=0.202, r=0.644, and r=0.706, respectively).CONCLUSIONBy enabling earlier tumor response prediction than morphometric evaluation, the histogram analysis of CT perfusion parameters appears to have a potential in providing prognostic predictive information in an irradiated rat model

    Changes in activity and isozyme patterns of peroxidase and chitinase in kiwifruit pollen

    Get PDF
    In this study, changes in activity and isozyme patterns of peroxidase (POD) and chitinase in kiwifruit (Actinidia chinensis) pollen were investigated under different storage conditions. Although residual activity was detected in heat-treated pollen, changes in POD activity were observed due to difference in storage conditions as revealed by preliminary studies in which pollen germination varied with different storage conditions. POD activity of kiwifruit pollen increased as proportions of viable pollen increased, indicating a positive correlation (R2=0.993) between pollen viability and POD activity. There was a detectable difference in the relative activity of POD enzyme between heat-treated and viable pollen. Decoloration of Congo Red was observed in germination medium which fresh pollen was cultured. The activity of individual chitinase isozymes present in kiwifruit pollen differed depending on storage conditions, which had a direct impact on pollen vigor. Although direct evidence showing that chitinase isozymes are implicated in pollen vigor is still uncertain, distinction of isozymes may facilitate more precise identification of viable pollen which possesses germination potential from non-viable pollen. Taken together, these results suggest that monitoring the activity of POD and chitinase can be an attractive alternative to evaluate pollen vigor in kiwifruit

    Breathing silicon anodes for durable high-power operations

    Get PDF
    Silicon anode materials have been developed to achieve high capacity lithium ion batteries for operating smart phones and driving electric vehicles for longer time. Serious volume expansion induced by lithiation, which is the main drawback of silicon, has been challenged by multi-faceted approaches. Mechanically rigid and stiff polymers (e.g. alginate and carboxymethyl cellulose) were considered as the good choices of binders for silicon because they grab silicon particles in a tight and rigid way so that pulverization and then break-away of the active mass from electric pathways are suppressed. Contrary to the public wisdom, in this work, we demonstrate that electrochemical performances are secured better by letting silicon electrodes breathe in and out lithium ions with volume change rather than by fixing their dimensions. The breathing electrodes were achieved by using a polysaccharide (pullulan), the conformation of which is modulated from chair to boat during elongation. The conformational transition of pullulan was originated from its a glycosidic linkages while the conventional rigid polysaccharide binders have beta linkagesopen1

    In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni

    Get PDF
    Several CRISPR-Cas9 orthologues have been used for genome editing. Here, we present the smallest Cas9 orthologue characterized to date, derived from Campylobacter jejuni (CjCas9), for efficient genome editing in vivo. After determining protospacer-adjacent motif (PAM) sequences and optimizing single-guide RNA (sgRNA) length, we package the CjCas9 gene, its sgRNA sequence, and a marker gene in an all-in-one adeno-associated virus (AAV) vector and produce the resulting virus at a high titer. CjCas9 is highly specific, cleaving only a limited number of sites in the human or mouse genome. CjCas9, delivered via AAV, induces targeted mutations at high frequencies in mouse muscle cells or retinal pigment epithelium (RPE) cells. Furthermore, CjCas9 targeted to the Vegfa or Hif1a gene in RPE cells reduces the size of laser-induced choroidal neovascularization, suggesting that in vivo genome editing with CjCas9 is a new option for the treatment of age-related macular degeneration.

    Development of Barley Cultivars for Animal Forage in Korea

    Get PDF
    In Korea, the domestic consumption of barley as a cereal crop has been decreasing since the 1980s. It has been considered that crop production in the winter-season rice fields could enhance the global competitiveness of domestic livestock industry by providing better quality fodder to livestock and enhancing field use rate. Therefore, the purpose of barley cultivation for cereal food production has been recently replaced by the production of the barley for forage use. Consequently, the area of barley cultivation for forage is markedly increasing in Korea. While any type of barley can be used as forage for feeding cattle, whole crop barley delivers a higher dry matter yield than conventional feed barley. This paper described the present state of forage barley cultivars developed in Korea

    Evaluation of the pathogenicity of GJB3 and GJB6 variants associated with nonsyndromic hearing loss

    Get PDF
    AbstractA number of genes responsible for hearing loss are related to ion recycling and homeostasis in the inner ear. Connexins (Cx26 encoded by GJB2, Cx31 encoded by GJB3 and Cx30 encoded by GJB6) are core components of gap junctions in the inner ear. Gap junctions are intercellular communication channels and important factors that are associated with hearing loss. To date, a molecular genetics study of GJB3 and GJB6 as a causative gene for hearing loss has not been performed in Korea. This study was therefore performed to elucidate the genetic characteristics of Korean patients with nonsyndromic sensorineural hearing loss and to determine the pathological mechanism of hearing loss by analyzing the intercellular communication function of Cx30 and Cx31 variants. Sequencing analysis of the GJB3 and GJB6 genes in our population revealed a total of nine variants, including four novel variants in the two genes. Three of the novel variants (Cx31-p.V27M, Cx31-p.V43M and Cx-30-p.I248V) and two previously reported variants (Cx31-p.V84I and Cx30-p.A40V) were selected for functional studies using a pathogenicity prediction program and assessed for whether the mutations were located in a conserved region of the protein. The results of biochemical and ionic coupling tests showed that both the Cx31-p.V27M and Cx31-p.V84I variants did not function normally when each was expressed as a heterozygote with the wild-type Cx31. This study demonstrated that two variants of Cx31 were pathogenic mutations with deleterious effect. This information will be valuable in understanding the pathogenic role of GJB3 and GJB6 mutations associated with hearing loss
    corecore