28 research outputs found

    Solanum lyratum

    Get PDF
    We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced by Solanum lyratum extracts (SLE) or diosgenin in WEHI-3 murine leukemia cells in vitro and antitumor activity in vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and induced G0/G1 phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. The in vivo study demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-induced G0/G1 phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activity in vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future

    Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion

    No full text
    Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration

    Suppressing VEGF-A/VEGFR-2 Signaling Contributes to the Anti-Angiogenic Effects of PPE8, a Novel Naphthoquinone-Based Compound

    No full text
    Natural naphthoquinones and their derivatives exhibit a broad spectrum of pharmacological activities and have thus attracted much attention in modern drug discovery. However, it remains unclear whether naphthoquinones are potential drug candidates for anti-angiogenic agents. The aim of this study was to evaluate the anti-angiogenic properties of a novel naphthoquinone derivative, PPE8, and explore its underlying mechanisms. Determined by various assays including BrdU, migration, invasion, and tube formation analyses, PPE8 treatment resulted in the reduction of VEGF-A-induced proliferation, migration, and invasion, as well as tube formation in human umbilical vein endothelial cells (HUVECs). We also used an aorta ring sprouting assay, Matrigel plug assay, and immunoblotting analysis to examine PPE8’s ex vivo and in vivo anti-angiogenic activities and its actions on VEGF-A signaling. It has been revealed that PPE8 inhibited VEGF-A-induced micro vessel sprouting and was capable of suppressing angiogenesis in in vivo models. In addition, PPE8 inhibited VEGF receptor (VEGFR)-2, Src, FAK, ERK1/2, or AKT phosphorylation in HUVECs exposed to VEGF-A, and it also showed significant decline in xenograft tumor growth in vivo. Taken together, these observations indicated that PPE8 may target VEGF-A–VEGFR-2 signaling to reduce angiogenesis. It also supports the role of PPE8 as a potential drug candidate for the development of therapeutic agents in the treatment of angiogenesis-related diseases including cancer

    Design, Synthesis and Evaluation of Novel Derivatives of Curcuminoids with Cytotoxicity

    No full text
    Curcumin and curcuminoids have been discussed frequently due to their promising functional groups (such as scaffolds of α,β-unsaturated β-diketone, α,β-unsaturated ketone and β′-hydroxy-α,β-unsaturated ketone connected with aromatic rings on both sides) that play an important role in various bioactivities, including antioxidant, anti-inflammatory, anti-proliferation and anticancer activity. A series of novel curcuminoid derivatives (a total of 55 new compounds) and three reference compounds were synthesized with good yields using three-step organic synthesis. The anti-proliferative activities of curcumin derivatives were examined for six human cancer cell lines: HeLaS3, KBvin, MCF-7, HepG2, NCI-H460 and NCI-H460/MX20. Compared to the IC50 values of all the synthesized derivatives, most α,β-unsaturated ketones displayed potent anti-proliferative effects against all six human cancer cell lines, whereas β′-hydroxy-α,β-unsaturated ketones and α,β-unsaturated β-diketones presented moderate anti-proliferative effects. Two potent curcuminoid derivatives were found among all the novel derivatives and reference compounds: (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a). These were selected for further analysis after the evaluation of their anti-proliferative effects against all human cancer cell lines. The results of apoptosis assays revealed that the number of dead cells was increased in early apoptosis and late apoptosis, while cell proliferation was also decreased after applying various concentrations of (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) to MCF-7 and HpeG2 cancer cells. Analysis of the gene expression arrays showed that three genes (GADD45B, SESN2 and BBC3) were correlated with the p53 pathway. From the quantitative PCR analysis, it was seen that (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) effectively induced the up-regulated expression of GADD45B, leading to the suppression of MCF-7 cancer cell formation and cell death. Molecular docking analysis was used to predict and sketch the interactions of the GADD45B-α,β-unsaturated ketone complex for help in drug design

    Antioxidant Effects and Phytochemical Properties of Seven Taiwanese Cirsium Species Extracts

    No full text
    In the present investigation, we compared the radical-scavenging activities and phenolic contents of seven Taiwanese Cirsium species with a spectrophotometric method. We further analyzed their phytochemical profiles with high-performance liquid chromatography–photodiode array detection (HPLC–DAD). We found that the flower part of Cirsium japonicum var. australe (CJF) showed the best radical-scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and the hypochlorite ion, for which the equivalents were 6.44 ± 0.17 mg catechin/g, 54.85 ± 0.66 mmol Trolox/g and 418.69 ± 10.52 mmol Trolox/g respectively. CJF also had the highest contents of total phenolics (5.23 ± 0.20 mg catechin/g) and phenylpropanoids (29.73 ± 0.72 mg verbascoside/g). According to the Pearson’s correlation coefficient, there was a positive correlation between the total phenylpropanoid content and ABTS radical-scavenging activities (r = 0.979). The radical-scavenging activities of the phenylpropanoids are closely related to their reducing power (r = 0.986). HPLC chromatograms obtained in validated HPLC conditions confirm that they have different phytochemical profiles by which they can be distinguished. Only CJF contained silicristin (0.66 ± 0.03 mg/g) and silydianin (9.13 ± 0.30 mg/g). CJF contained the highest contents of apigenin (5.56 ± 0.09 mg/g) and diosmetin (2.82 ± 0.10 mg/g). Among the major constituents, silicristin had the best radical-scavenging activities against DPPH (71.68 ± 0.66 mg catechin/g) and ABTS (3.01 ± 0.01 mmol Trolox/g). However, diosmetin had the best reducing power and radical-scavenging activity against the hypochlorite anion (41.57 ± 1.14 mg mmol Trolox/g). Finally, we found that flavonolignans (especial silicristin and silydianin) and diosmetin acted synergistically in scavenging radicals

    Triterpenoid Contents and Anti-Inflammatory Properties of the Methanol Extracts of Ligustrum Species Leaves

    No full text
    Ligustrum (privet) plants are used by Chinese physicians to prevent and cure hepatitis and chronic bronchitis. Three common Ligustrum plant spp., namely Ligustrum lucidum Ait. (LL), L. pricei Hayata (LP) and L. sinensis Lour. (LS) were collected to assess their analgesic/anti-inflammatory properties on chemical-induced nociception and carrageenan-induced inflammation in rodents. The methanol extracts from Ligustrum plants leaves effectively inhibited nociceptive responses induced by 1% acetic acid and 1% formalin. LP and LL reduced the edema induced by 1% carrageenan. LP exhibited the best potency of the Ligustrum plants. Furthermore, LP reduced the abdominal Evan’s blue extravasations caused by lipopolysaccharide, lipoteichoic acid, autocrines and sodium nitroprusside. The triterpenoid content of the three Ligustrum spp. was measured by high performance liquid chromatography using a photodiode array detector. LP contained the highest content of amyrin, betulinic acid and lupeol. LL had the highest content of oleanolic acid and ursolic acid. The various degrees of analgesic/anti-inflammatory effects among three Ligustrum plants may be related to their different triterpenoid contents. LP is a potential analgesic and anti-inflammatory Ligustrum plant. The effects of LP are partially related to the inhibition of cyclooxygenase-2 activity and a decrease in microvascular permeability via the actions of autocrines and kinins

    Synthetic Tryptanthrin Derivatives Induce Cell Cycle Arrest and Apoptosis via Akt and MAPKs in Human Hepatocellular Carcinoma Cells

    No full text
    Trytanthrin, found in Ban-Lan-Gen, is a natural product containing an indoloquinazoline moiety and has been shown to possess anti-inflammatory and anti-viral activities. Chronic inflammation and hepatitis B are known to be associated with the progression of hepatocellular carcinoma (HCC). In this study, a series of tryptanthrin derivatives were synthesized to generate potent anti-tumor agents against HCC. This effort yielded two compounds, A1 and A6, that exhibited multi-fold higher cytotoxicity in HCC cells than the parent compound. Flow cytometric analysis demonstrated that A1 and A6 caused S-phase arrest and downregulated the expression of cyclin A1, B1, CDK2, and p-CDC2. In addition to inducing caspase-dependent apoptosis, A1 and A6 exhibited similar regulation of the phosphorylation or expression of multiple signaling targets, including Akt, NF-κB, and mitogen-activated protein kinases. The anti-tumor activities of A1 and A6 were also attributable to the generation of reactive oxygen species, accompanied by an increase in p-p53 levels. Therefore, A1 and A6 have potential clinical applications since they target diverse aspects of cancer cell growth in HCC
    corecore