42 research outputs found

    CD147 overexpression on synoviocytes in rheumatoid arthritis enhances matrix metalloproteinase production and invasiveness of synoviocytes

    Get PDF
    Macrophage-like synoviocytes and fibroblast-like synoviocytes (FLS) are known as the most active cells of rheumatoid arthritis (RA) and are close to the articular cartilage in a position enabling them to invade the cartilage. Macrophage-like synoviocytes and FLS expression of matrix metalloproteinases (MMPs) and their interaction has aroused great interest. The present article studied the expression of CD147, also called extracellular matrix metalloproteinase inducer, on monocytes/macrophages and FLS from RA patients and its potential role in enhancing MMPs and the invasiveness of synoviocytes. Expression of CD147 on FLS derived from RA patients and from osteoarthritis patients, and expression of CD147 on monocytes/macrophages from rheumatic synovial fluid and healthy peripheral blood were analyzed by flow cytometry. The levels of CD147, MMP-2 and MMP-9 mRNA in FLS were detected by RT-PCR. The role of CD147 in MMP production and the cells' invasiveness in vitro were studied by the co-culture of FLS with the human THP-1 cell line or monocytes/macrophages, by gel zymography and by invasion assay. The results showed that the expression of CD147 was higher on RA FLS than on osteoarthritis FLS and was higher on monocytes/macrophages from rheumatic synovial fluid than on monocytes/macrophages from healthy peripheral blood. RT-PCR showed that the expressions of CD147, MMP-2 and MMP-9 mRNA was higher in RA FLS than in osteoarthritis FLS. A significantly elevated secretion and activation of MMP-2 and MMP-9 were observed in RA FLS co-cultured with differentiated THP-1 cells or RA synovial monocytes/macrophages, compared with those co-cultured with undifferentiated THP-1 cells or healthy control peripheral blood monocytes. Invasion assays showed an increased number of invading cells in the co-cultured RA FLS with differentiated THP-1 cells or RA synovial monocytes/macrophages. CD147 antagonistic peptide inhibited the MMP production and the invasive potential. Our studies demonstrated that the CD147 overexpression on monocytes/macrophages and FLS in RA patients may be responsible for the enhanced MMP secretion and activation and for the invasiveness of synoviocytes. These findings suggest that CD147 may be one of the important factors in progressive joint destruction of RA and that CD147 may be a potential therapeutic target in RA treatment

    帕金森病认知功能损害的中医药治疗

    Get PDF
    Parkinson’s disease (PD) is a degenerative disease of the central nervous system that involves many other systems. Cognitive impairment is one of the major presentations of non-motor symptoms of PD. Mild cognitive impairment in Parkinson’s disease (PD-MCI), a predictive factor of the transformation of PD to dementia is a common cognitive defect in PD patients. The effects of traditional Chinese Medicine on cognitive impairment in Parkinson’s disease were valued at home and abroad. Traditional Chinese Medicine has less toxic and side effects, treatment based on syndrome differentiation, and adjustment the balance of Yin and Yang for patients. Combination of Chinese and western medicine treatment could not only reduce the amount of dopamine agents but also counteract the toxic and side effects induced by dopamine agents. Meanwhile, combination of Chinese and western medicine treatment could delay the occurrence and development of cognitive impairment, and has broad application prospect.帕金森病(PD)是一种累及多系统的中枢神经系统变性病。认知功能障碍是PD非运动症状的重要表现形式,大多数PD患者均伴有认知功能损害并最终发展成为痴呆。中医药在帕金森病治疗中的作用越来越受到国内外的重视。中药具有毒副作用小且通过辨证论治、从整体调节患者阴阳平衡的特点,中西医结合治疗既能减少多巴胺制剂用量,又能有效拮抗和治疗西药所引起的毒副作用,延缓认知障碍的发生和发展,具有广阔应用前景

    Protection Effect of Zhen-Wu-Tang on Adriamycin-Induced Nephrotic Syndrome via Inhibiting Oxidative Lesions and Inflammation Damage

    Get PDF
    Zhen-wu-tang (ZWT), a well-known formula in China, is widely used to treat chronic kidney diseases. However, very little information on ZWT’s mechanism of action is currently available. In this study, we investigated the possible protective role and underlying mechanism of ZWT on nephrotic syndrome (NS) induced by Adriamycin (intravenous injection, 6.0 mg/kg) in rats using biochemical and histopathological approaches. ZWT decreased urine protein excretion and the serum levels of total cholesterol, triglycerides, blood urea nitrogen, and creatinine significantly in diseased rats. A decrease in plasma levels of total protein and albumin was also recorded in nephropathic rats. Pathological results show an improved pathological state and recovering glomerular structure in ZWT treatment groups. ZWT decreased renal IL-8 level but increased renal IL-4 level. In addition, rats subjected to ZWT exhibited less IgG deposition in glomerulus compared with model group. RT-PCR results showed that ZWT decreased the mRNA expression of NF-κB p65 and increased the mRNA expression of IκB. Furthermore, ZWT reduced the level of MDA and increased SOD activity. These results demonstrated that ZWT ameliorated Adriamycin-induced NS in rats possibly by inhibiting Adriamycin-induced inflammation damage, enhancing body’s antioxidant capacity, thereby protecting glomerulus from injury

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Influence of separating distance between atomic sensors for gravitational wave detection

    No full text
    We consider a recent scheme of gravitational wave detection using atomic interferometers as inertial sensors, and reinvestigate its configuration using the concept of sensitivity functions. We show that such configuration can suppress noise without influencing the gravitational wave signal. But the suppression is insufficient for the direct observation of gravitational wave signals, so we analyse the behaviour of the different noises influencing the detection scheme. As a novel method, we study the relations between the measurement sensitivity and the distance between two interferometers, and find that the results derived from vibration noise and laser frequency noise are in stark contrast to that derived from the shot noise, which is significant for the configuration design of gravitational wave detectors using atomic interferometers

    An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms

    No full text
    Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus, which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge
    corecore