46,032 research outputs found

    Low-Voltage High-Linearity Wideband Current Differencing Transconductance Amplifier and Its Application on Current-Mode Active Filter

    Get PDF
    A low-voltage high-linearity wideband current differencing transconductance amplifier (CDTA) is presented in this paper. The CDTA consists of a current differencing circuit and a cross-coupling transconductance circuit. The PSPICE simulations of the proposed CDTA show a good performance: -3dB frequency bandwith is about 900 MHz, low power consumption is 2.48 mW, input current linear range is ±100 µA and low current-input resistance is less than 20 Ω, high current-output resistance is more than 3 MΩ. PSpice simulations for a current-mode universal filter and a proposed high-order filter are also conducted, and the results verify the validity of the proposed CDTA

    The LHC di-photon Higgs signal predicted by little Higgs models

    Full text link
    Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the di-photon signal pphγγpp\to h\to \gamma\gamma. In this work we perform a comparative study for this signal in some typical little Higgs models, namely the littlest Higgs model (LH), two littlest Higgs models with T-parity (named LHT-I and LHT-II) and the simplest little Higgs modes (SLH). We find that compared with the Standard Model prediction, the di-photon signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (\lsim 10%) in the LH model but can be quite severe (90\simeq 90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the di-photon channel at the LHC will be more difficult than discovering the SM Higgs boson.Comment: 17 pages, 4 figures, 1 tabl

    BCS-BEC crossover in a relativistic boson-fermion model beyond mean field approximation

    Full text link
    We investigate the fluctuation effect of the di-fermion field in the crossover from Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein condensate (BEC) in a relativistic superfluid. We work within the boson-fermion model obeying a global U(1) symmetry. To go beyond the mean field approximation we use Cornwall-Jackiw-Tomboulis (CJT) formalism to include higher order contributions. The quantum fluctuations of the pairing condensate is provided by bosons in non-zero modes, whose interaction with fermions gives the two-particle-irreducible (2PI) effective potential. It changes the crossover property in the BEC regime. With the fluctuations the superfluid phase transition becomes the first order in grand canonical ensemble. We calculate the condensate, the critical temperature TcT_{c} and particle abundances as functions of crossover parameter the boson mass.Comment: The model Lagrangian is re-formulated by decomposing the complex scalar field into its real and imaginary parts. The anomalous propagators of the complex scalar are then included at tree level. All numerical results are updated. ReVTex 4, 13 pages, 10 figures, PRD accepted versio

    PHENIX Measurement of High-pTp_T Hadron-hadron and Photon-hadron Azimuthal Correlations

    Full text link
    High-pTp_T hadron-hadron correlations have been measured with the PHENIX experiment in \Cu and \pp collisions at sNN=200\sqrt{s_{NN}}=200 GeV. A comparison of the jet widths and yields between the two colliding systems allows us to study the medium effect on jets. We also present a first measurement of direct photon-hadron correlations in \Au and \pp collisions. We find that the near-side yields are consistent with zero in both systems. By comparing the jet yields on the away side, we observe a suggestion of the expected suppression of hadrons associated with photons in \Au collisions.Comment: 5 pages, proceeding for parallel talk on Quark Matter 200

    Topological Weyl and Node-Line Semimetals in Ferromagnetic Vanadium-Phosphorous-Oxide β\beta-V2_2OPO4_4 Compound

    Full text link
    We propose that the topological semimetal features can co-exist with ferromagnetic ground state in vanadium-phosphorous-oxide β\beta-V2_2OPO4_4 compound from first-principles calculations. In this magnetic system with inversion symmetry, the direction of magnetization is able to manipulate the symmetric protected band structures from a node-line type to a Weyl one in the presence of spin-orbital-coupling. The node-line semimetal phase is protected by the mirror symmetry with the reflection-invariant plane perpendicular to magnetic order. Within mirror symmetry breaking due to the magnetization along other directions, the gapless node-line loop will degenerate to only one pair of Weyl points protected by the rotational symmetry along the magnetic axis, which are largely separated in momentum space. Such Weyl semimetal phase provides a nice candidate with the minimum number of Weyl points in a condensed matter system. The results of surface band calculations confirm the non-trivial topology of this proposed compound. This findings provide a realistic candidate for the investigation of topological semimetals with time-reversal symmetry breaking, particularly towards the realization of quantum anomalous Hall effect in Weyl semimetals.Comment: 5 pages, 4 figure

    SUSY Dark Matter In Light Of CDMS/XENON Limits

    Full text link
    In this talk we briefly review the current CDMS/XENON constraints on the neutralino dark matter in three popular supersymmetric models: the minimal (MSSM), the next-to-minimal (NMSSM) and the nearly minimal (nMSSM). The constraints from the dark matter relic density and various collider experiments are also taken into account. The conclusion is that for each model the current CDMS/XENON limits can readily exclude a large part of the parameter space allowed by other constraints and the future SuperCDMS or XENON100 can cover most of the allowed parameter space. The implication for the Higgs search at the LHC is also discussed. It is found that in the currently allowed parameter space the MSSM charged Higgs boson is quite unlikely to be discovered at the LHC while the neutral Higgs bosons HH and AA may be accessible at the LHC in the parameter space with a large μ\mu parameter.Comment: talk given at 2nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Nov 5-6, 2010, Hsinchu, Taiwan (to appear in Int. J. Mod. Phys. D
    corecore