698 research outputs found
Hepatitis B virus subgenotype C2 is the most prevalent subgenotype in northeast China
AbstractThe geographical distribution of hepatitis B virus (HBV) subgenotypes and their clinical implications in patients with acute and chronic hepatitis B in the Heilung-kiang province of northeast China were investigated. Nested PCR and multiplex PCR were performed with genotype-specific primers and with subgenotype-specific primers to identify genotypes and subgenotypes from serum samples of 412 HBV infections including 69 with acute self-limited hepatitis (ASH) and 343 with chronic hepatitis (CH). A total of 361 samples were genotyped and 304 were further subgenotyped. The most common HBV genotype was C (93.63%, 338/361), with subgenotype group C2 (83.73%, 283/338) predominating. Genotype B was also found and subgenotype B2 predominated within this genotype. Out of 69 infected patients with ASH, 48 were identified as genotype C and all belonged to subgenotype C2. Of 343 infected patients with CH, 313 were genotyped and 256 were subgenotyped; amongst these, C2 (91.80%, 235/256), B2 (7.42%, 19/256) and mixed subgenotypes B2 and C2 (0.78%, 2/256) were found. In HBV subgenotype C2 infections, ASH had a higher ratio of women than CH patients. These results show that HBV subgenotypes C2 and B2 were found in Heilung-kiang province of northeast China. In ASH and CH groups, the distributions of subgenotypes were coincident with C2, the predominant subgenotype. Analysis of the association between subgenotype and the outcomes of HBV infection was inconclusive in our study
Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot
We study coherent charge transfer between an Aharonov-Bohm ring and a
side-attached quantum dot. The charge fluctuation between the two
sub-structures is shown to give rise to algebraic suppression of the persistent
current circulating the ring as the size of the ring becomes relatively large.
The charge fluctuation at resonance provides transition between the diamagnetic
and the paramagnetic states.
Universal scaling, crossover behavior of the persistent current from a
continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure
Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time
We present a model for structure formation, melting, and optical properties
of gold/DNA nanocomposites. These composites consist of a collection of gold
nanoparticles (of radius 50 nm or less) which are bound together by links made
up of DNA strands. In our structural model, the nanocomposite forms from a
series of Monte Carlo steps, each involving reaction-limited cluster-cluster
aggregation (RLCA) followed by dehybridization of the DNA links. These links
form with a probability which depends on temperature and particle
radius . The final structure depends on the number of monomers (i. e. gold
nanoparticles) , , and the relaxation time. At low temperature, the
model results in an RLCA cluster. But after a long enough relaxation time, the
nanocomposite reduces to a compact, non-fractal cluster. We calculate the
optical properties of the resulting aggregates using the Discrete Dipole
Approximation. Despite the restructuring, the melting transition (as seen in
the extinction coefficient at wavelength 520 nm) remains sharp, and the melting
temperature increases with increasing as found in our previous
percolation model. However, restructuring increases the corresponding link
fraction at melting to a value well above the percolation threshold. Our
calculated extinction cross section agrees qualitatively with experiments on
gold/DNA composites. It also shows a characteristic ``rebound effect,''
resulting from incomplete relaxation, which has also been seen in some
experiments. We discuss briefly how our results relate to a possible sol-gel
transition in these aggregates.Comment: 12 pages, 10 figure
Neutrino Oscillations and Collider Test of the R-parity Violating Minimal Supergravity Model
We study the R-parity violating minimal supergravity models accounting for
the observed neutrino masses and mixing, which can be tested in future collider
experiments. The bi-large mixing can be explained by allowing five dominant
tri-linear couplings and . The desired ratio
of the atmospheric and solar neutrino mass-squared differences can be obtained
in a very limited parameter space where the tree-level contribution is tuned to
be suppressed. In this allowed region, we quantify the correlation between the
three neutrino mixing angles and the tri-linear R-parity violating couplings.
Qualitatively, the relations , and are required by the large
atmospheric neutrino mixing angle and the small angle
, and the large solar neutrino mixing angle ,
respectively. Such a prediction on the couplings can be tested in the next
linear colliders by observing the branching ratios of the lightest
supersymmetric particle (LSP). For the stau or the neutralino LSP, the ratio
can be measured
by establishing or , respectively. The
information on the couplings can be drawn by measuring if the neutralino LSP is heavier than the top
quark.Comment: RevTex, 25 pages, 8 eps figure
Neutrino Mass from R-parity Violation in Split Supersymmetry
We investigate how the observed neutrino data can be accommodated by R-parity
violation in Split Supersymmetry. The atmospheric neutrino mass and mixing are
explained by the bilinear parameters inducing the neutrino-neutralino
mixing as in the usual low-energy supersymmetry. Among various one-loop
corrections, only the quark-squark exchanging diagrams involving the order-one
trilinear couplings can generate the solar neutrino mass
and mixing if the scalar mass is not larger than GeV. This scheme
requires an unpleasant hierarchical structure of the couplings, e.g.,
, and . On the other hand, the model has a distinct collider
signature of the lightest neutralino which can decay only to the final states,
and , arising from the bilinear mixing. Thus, the
measurement of the ratio; would provide a clean probe of the small reactor and
large atmospheric neutrino mixing angles as far as the neutralino mass is
larger than 62 GeV.Comment: 10 pages, 3 figures, version submitted to JHE
Anti-Kondo resonance in transport through a quantum wire with a side-coupled quantum dot
An interacting quantum dot side-coupled to a perfect quantum wire is studied.
Transport through the quantum wire is investigated by using an exact sum rule
and the slave-boson mean field treatment. It is shown that the Kondo effect
provides a suppression of the transmission due to the destructive interference
of the ballistic channel and the Kondo channel. At finite temperatures,
anti-resonance behavior is found as a function of the quantum dot level
position, which is interpreted as a crossover from the high temperature Kondo
phase to the low temperature charge fluctuation phase.Comment: 4 pages Revtex, 3 eps figure
Static coupling effect of a two-degree-of-freedom direct drive induction motor
Two-degree-of-freedom motors are capable of producing linear, rotary, and helical motion, and thus have widespread applications in special industries. In this study, a new concept- static coupling effect is studied in the two-degree-of-freedom direct-drive induction motor (2DoFDDIM). The proposed approach is based on the image method and the three-dimensional (3D) finite-element method. The image method model is established to analyse its reasons and predict the main effects, which are then verified by the proposed 3D finite-element static coupling model and experiments. The induced voltages and currents are produced in the static part and induced torque or force is obtained, even though the static part is not energised. It is concluded that the static coupling effect increases with the supply frequency and is influenced by the stator winding configuration. Thus, the existence of the static coupling effect is confirmed, which must be taken into account in future optimisation and precise control of the 2DoFDDIM
Ab initio calculation of resonant X-ray scattering in Manganites
We study the origin of the resonant x-ray signal in manganites and generalize
the resonant cross-section to the band structure framework. With {\it ab
initio} LSDA and LSDA+U calculations we determine the resonant x-ray spectrum
of LaMnO. The calculated spectrum and azimuthal angle dependence at the Mn
-edge reproduce the measured data without adjustable parameters. The
intensity of this signal is directly related to the orthorhombicity of the
lattice. We also predict a resonant x-ray signal at the La -edge, caused by
the tilting of the MnO octahedra. This shows that the resonant x-ray signal
in the hard x-ray regime can be understood in terms of the band structure of a
material and is sensitive to the fine details of crystal structure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.
Instabilities and Bifurcations of Nonlinear Impurity Modes
We study the structure and stability of nonlinear impurity modes in the
discrete nonlinear Schr{\"o}dinger equation with a single on-site nonlinear
impurity emphasizing the effects of interplay between discreteness,
nonlinearity and disorder. We show how the interaction of a nonlinear localized
mode (a discrete soliton or discrete breather) with a repulsive impurity
generates a family of stationary states near the impurity site, as well as
examine both theoretical and numerical criteria for the transition between
different localized states via a cascade of bifurcations.Comment: 8 pages, 8 figures, Phys. Rev. E in pres
Liouville theorems for harmonic maps
We prove several Liouville theorems for harmonic maps between certain classes of Riemannian manifolds. In particular, the results can be applied to harmonic maps from the Euclidean space ( R m , g 0 ) to a large class of Riemannian manifolds. Our assumptions on the harmonic maps concern the asymptotic behavior of the maps at ∞.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46575/1/222_2005_Article_BF02100594.pd
- …