17,656 research outputs found
Detecting Photon-Photon Interactions in a Superconducting Circuit
A local interaction between photons can be engineered by coupling a nonlinear
system to a transmission line. The required high impedance transmission line
can be conveniently formed from a chain of Josephson junctions. The
nonlinearity is generated by side-coupling this chain to a Cooper pair box. We
propose to probe the resulting photon-photon interactions via their effect on
the current-voltage characteristic of a voltage-biased Josephson junction
connected to the transmission line. Considering the Cooper pair box to be in
the weakly anharmonic regime, we find that the dc current through the probe
junction yields features around the voltages , where
is the plasma frequency of the superconducting circuit. The features
at are a direct signature of the photon-photon interaction in the
system.Comment: 10 pages, 7 figure
Spatial organization and evolutional period of the epidemic model using cellular automata
We investigate epidemic models with spatial structure based on the cellular
automata method. The construction of the cellular automata is from the study by
Weimar and Boon about the reaction-diffusion equations [Phys. Rev. E 49, 1749
(1994)]. Our results show that the spatial epidemic models exhibit the
spontaneous formation of irregular spiral waves at large scales within the
domain of chaos. Moreover, the irregular spiral waves grow stably. The system
also shows a spatial period-2 structure at one dimension outside the domain of
chaos. It is interesting that the spatial period-2 structure will break and
transform into a spatial synchronous configuration in the domain of chaos. Our
results confirm that populations embed and disperse more stably in space than
they do in nonspatial counterparts.Comment: 6 papges,5 figures. published in Physics Review
Electron Removal Self Energy and its application to Ca2CuO2Cl2
We propose using the self energy defined for the electron removal Green's
function. Starting from the electron removal Green's function, we obtained
expressions for the removal self energy Sigma^ER (k,omega) that are applicable
for non-quasiparticle photoemission spectral functions from a single band
system. Our method does not assume momentum independence and produces the self
energy in the full k-omega space. The method is applied to the angle resolved
photoemission from Ca_2CuO_2Cl_2 and the result is found to be compatible with
the self energy value from the peak width of sharp features. The self energy is
found to be only weakly k-dependent. In addition, the Im Sigma shows a maximum
at around 1 eV where the high energy kink is located.Comment: 5 pages, 3 figure
Primary thermometry triad at 6 mK in mesoscopic circuits
Quantum physics emerge and develop as temperature is reduced. Although
mesoscopic electrical circuits constitute an outstanding platform to explore
quantum behavior, the challenge in cooling the electrons impedes their
potential. The strong coupling of such micrometer-scale devices with the
measurement lines, combined with the weak coupling to the substrate, makes them
extremely difficult to thermalize below 10 mK and imposes in-situ thermometers.
Here we demonstrate electronic quantum transport at 6 mK in micrometer-scale
mesoscopic circuits. The thermometry methods are established by the comparison
of three in-situ primary thermometers, each involving a different underlying
physics. The employed combination of quantum shot noise, quantum back-action of
a resistive circuit and conductance oscillations of a single-electron
transistor covers a remarkably broad spectrum of mesoscopic phenomena. The
experiment, performed in vacuum using a standard cryogen-free dilution
refrigerator, paves the way toward the sub-millikelvin range with additional
thermalization and refrigeration techniques.Comment: Article and Supplementar
Sharp interface limits of phase-field models
The use of continuum phase-field models to describe the motion of
well-defined interfaces is discussed for a class of phenomena, that includes
order/disorder transitions, spinodal decomposition and Ostwald ripening,
dendritic growth, and the solidification of eutectic alloys. The projection
operator method is used to extract the ``sharp interface limit'' from phase
field models which have interfaces that are diffuse on a length scale . In
particular,phase-field equations are mapped onto sharp interface equations in
the limits and , where and are
respectively the interface curvature and velocity and is the diffusion
constant in the bulk. The calculations provide one general set of sharp
interface equations that incorporate the Gibbs-Thomson condition, the
Allen-Cahn equation and the Kardar-Parisi-Zhang equation.Comment: 17 pages, 9 figure
Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \phi^4_2
We perform a Monte Carlo simulation calculation of the critical coupling
constant for the continuum {\lambda \over 4} \phi^4_2 theory. The critical
coupling constant we obtain is [{\lambda \over \mu^2}]_crit=10.24(3).Comment: 11 pages, 4 figures, LaTe
Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates
Finite temperature simulations are used to study quadrupole excitations of a
trapped Bose-Einstein condensate. We focus specifically on the m=0 mode, where
a long-standing theoretical problem has been to account for an anomalous
variation of the mode frequency with temperature. We explain this behavior in
terms of the excitation of two separate modes, corresponding to coupled motion
of the condensate and thermal cloud. The relative amplitudes of the modes
depends sensitively on the temperature and on the frequency of the harmonic
drive used to excite them. Good agreement with experiment is found for
appropriate drive frequencies.Comment: 4 pages, 3 figure
Spatial soliton robustness against spatially anisotropic phase perturbations
We demonstrate experimentally that spatial solitons in AlGaAs waveguides are resilient against spatially anisotropic perturbations in their phase caused by introducing a wedge in the soliton propagation path. In agreement with numerical simulations, the solitons maintained their initial beam shape and width, independent of the fraction of the soliton beam intercepted by the wedge
- …